Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Physics

MIT readies neutron microscope – new kind of imaging

Tibi Puiu by Tibi Puiu
October 8, 2013
in Physics, Research

A cylindrical mirror of the type the MIT and NASA researchers have developed for a novel type of neutron microscope is shown on a test stage in the lab, with light reflected through it to test the precision polishing of its shape.  (c) NASA
A cylindrical mirror of the type the MIT and NASA researchers have developed for a novel type of neutron microscope is shown on a test stage in the lab, with light reflected through it to test the precision polishing of its shape. (c) NASA

A joint project between scientists at NASA and MIT is focusing on creating a new kind of microscope that uses neutrons instead of beams of light or electrons to create high-resolution images. Since the subatomic particles are electrically neutral, such a microscope would allow scientists to peer through places otherwise inaccessible today, like inside metals even if these are in motion.  Also, neutron instruments are also uniquely sensitive to magnetic properties and to lighter elements that are important in biological materials.

The concept of a neutron microscope isn’t entirely new, however other neutron instruments developed so far can be considered primitive to say the least.  These are crude imaging systems that simply let light through a tiny opening, resulting in low-resolution images.

The team of researchers at MIT want to build something that rivals in quality current atomic force microscopes or electron microscopes. With this in mind, MIT postdoc Dazhi Liu, research scientist Boris Khaykovich, professor David Moncton, and four others are currently exploring an innovative idea that’s been on the table for more than 60 years.

“For neutrons, there have been no high-quality focusing devices,” Moncton says. “Essentially all of the neutron instruments developed over a half-century are effectively pinhole cameras.” But with this new advance, he says, “We are turning the field of neutron imaging from the era of pinhole cameras to an era of genuine optics.”

“The new mirror device acts like the image-forming lens of an optical microscope,” Liu adds.

The team's small prototype neutron microscope is shown set up for initial testing at MIT's Nuclear Reactor Laboratory. The microscope mirrors are inside the small metal box at top right.
The team’s small prototype neutron microscope is shown set up for initial testing at MIT’s Nuclear Reactor Laboratory. The microscope mirrors are inside the small metal box at top right.

The main challenge in developing a neutron optical device is that the particles minimally interact with matter, which makes it practically impossible to focus a beam of neutrons in the same way you would light or electrons. A basic means of manipulating neutron beams was expressed in the mid 1950s, even though the original idea was used for X-rays, involving concentric mirrors. Neutron beams interact weakly, much like X-rays, and can be focused by a similar optical system.

A neutron microscope

The instrument currently in development by the researchers uses several reflective cylinders nested one inside the other, so as to increase the surface area available for reflection. The resulting device could improve the performance of existing neutron imaging systems by a factor of about 50, the researchers say — allowing for much sharper images, much smaller instruments, or both.

So far, the team have digitized their concept, and have even created a small-version of the instrument as a proof of concept and demonstrated its performance using a neutron beam facility at MIT’s Nuclear Reactor Laboratory. Such a new instrument could be used to observe and characterize many kinds of materials and biological samples; other nonimaging methods that exploit the scattering of neutrons might benefit as well. Because the neutron beams are relatively low-energy, they are “a much more sensitive scattering probe,” Moncton says, for phenomena such as “how atoms or magnetic moments move in a material.”

 

Roger Pynn, a materials scientist at the University of California at Santa Barbara who was not involved in this research, says, “I expect it to lead to a number of breakthroughs in neutron imaging. … It offers the potential for some really new applications of neutron scattering — something that we haven’t seen for quite a while.”

The concept was outlined in a paper published in the journal Nature Communications.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Digital imaging of the future: artificial imaging and 3-D displays
  2. Neutron and X-ray imaging reveal how ancient weapons were made
  3. Incredible molecular imaging shows individual chemical bonds for first time
  4. Infrared holographic imaging allows firefighters to see through flames
  5. Imaging in 3D using a single camera lens
Tags: atomic force microscopyelectron microscopemicroscopeneutron beamneutrons

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW