ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

MIT readies neutron microscope – new kind of imaging

Tibi PuiubyTibi Puiu
October 8, 2013
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit
A cylindrical mirror of the type the MIT and NASA researchers have developed for a novel type of neutron microscope is shown on a test stage in the lab, with light reflected through it to test the precision polishing of its shape.  (c) NASA
A cylindrical mirror of the type the MIT and NASA researchers have developed for a novel type of neutron microscope is shown on a test stage in the lab, with light reflected through it to test the precision polishing of its shape. (c) NASA

A joint project between scientists at NASA and MIT is focusing on creating a new kind of microscope that uses neutrons instead of beams of light or electrons to create high-resolution images. Since the subatomic particles are electrically neutral, such a microscope would allow scientists to peer through places otherwise inaccessible today, like inside metals even if these are in motion.  Also, neutron instruments are also uniquely sensitive to magnetic properties and to lighter elements that are important in biological materials.

The concept of a neutron microscope isn’t entirely new, however other neutron instruments developed so far can be considered primitive to say the least.  These are crude imaging systems that simply let light through a tiny opening, resulting in low-resolution images.

The team of researchers at MIT want to build something that rivals in quality current atomic force microscopes or electron microscopes. With this in mind, MIT postdoc Dazhi Liu, research scientist Boris Khaykovich, professor David Moncton, and four others are currently exploring an innovative idea that’s been on the table for more than 60 years.

“For neutrons, there have been no high-quality focusing devices,” Moncton says. “Essentially all of the neutron instruments developed over a half-century are effectively pinhole cameras.” But with this new advance, he says, “We are turning the field of neutron imaging from the era of pinhole cameras to an era of genuine optics.”

“The new mirror device acts like the image-forming lens of an optical microscope,” Liu adds.

The team's small prototype neutron microscope is shown set up for initial testing at MIT's Nuclear Reactor Laboratory. The microscope mirrors are inside the small metal box at top right.
The team’s small prototype neutron microscope is shown set up for initial testing at MIT’s Nuclear Reactor Laboratory. The microscope mirrors are inside the small metal box at top right.

The main challenge in developing a neutron optical device is that the particles minimally interact with matter, which makes it practically impossible to focus a beam of neutrons in the same way you would light or electrons. A basic means of manipulating neutron beams was expressed in the mid 1950s, even though the original idea was used for X-rays, involving concentric mirrors. Neutron beams interact weakly, much like X-rays, and can be focused by a similar optical system.

A neutron microscope

The instrument currently in development by the researchers uses several reflective cylinders nested one inside the other, so as to increase the surface area available for reflection. The resulting device could improve the performance of existing neutron imaging systems by a factor of about 50, the researchers say — allowing for much sharper images, much smaller instruments, or both.

So far, the team have digitized their concept, and have even created a small-version of the instrument as a proof of concept and demonstrated its performance using a neutron beam facility at MIT’s Nuclear Reactor Laboratory. Such a new instrument could be used to observe and characterize many kinds of materials and biological samples; other nonimaging methods that exploit the scattering of neutrons might benefit as well. Because the neutron beams are relatively low-energy, they are “a much more sensitive scattering probe,” Moncton says, for phenomena such as “how atoms or magnetic moments move in a material.”

 

Roger Pynn, a materials scientist at the University of California at Santa Barbara who was not involved in this research, says, “I expect it to lead to a number of breakthroughs in neutron imaging. … It offers the potential for some really new applications of neutron scattering — something that we haven’t seen for quite a while.”

The concept was outlined in a paper published in the journal Nature Communications.

RelatedPosts

Incredible molecular imaging shows individual chemical bonds for first time
Cannabis under the microscope: up close and personal
New Atomic Force Microscope is x2,000 faster, images chemical reactions almost real time
Holographic microscopes might be the cost-effective alternative of the future
Tags: atomic force microscopyelectron microscopemicroscopeneutron beamneutrons

Share1TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

byTibi Puiu
2 months ago
News

Scientists Develop World’s Fastest Microscope — It’s So Fast It Can Capture Electrons Moving

byTibi Puiu
11 months ago
Smartphone microscope.
Chemistry

With a few cheap changes, your smartphone can now detect lead contamination in water

byAlexandru Micu
7 years ago
This is a 3-D model of FlyPi (left) and the assembled FlyPi with single micromanipulator and light-emitting diode-ring module, diffusor, and Petri dish adapter mounted in the bottom (right). Credit: Tom Baden.
News

3-D printing and Raspberry Pi are turned into impressive lab equipment on the cheap

byTibi Puiu
8 years ago

Recent news

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

August 2, 2025

Brazil’s ‘Big Zero’ Stadium on the Equator Lets Teams Change Hemispheres at Half Time

August 1, 2025

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

August 1, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.