ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

LHC passes ‘hardest’ test yet: ping-pong ball blazes through particle accelerator

Tibi PuiubyTibi Puiu
April 16, 2013
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit
The Large Hadron Collider may have shut down, but physicists are using some unusual techniques to test it, including a ping-pong ball.
The Large Hadron Collider may have shut down, but physicists are using some unusual techniques to test it, including a ping-pong ball.

How do you check a multi-billion dollar particle accelerator for defects or malfunctions? Sure, you could use various, equally expensive and sophisticated tools, but in some instances low tech comes in the aid of high tech, say a ping-pong ball. Wait, what ?! Yup, today researchers  sent a carefully sterilized, slightly-smaller-than-regulation ping-pong ball through a 2-mile section of the Large Hadron Collider. The LHC passed the ping-pong ball test flawlessly.

The ping-pong-ball is actually called a radio-frequency ball by scientists and holds a tiny transmitter inside. To blaze it through the particle accelerator,  simple force of suction is used, ping its position every third of a mile through its transmitter.

“The beam pipes are fragile,” says Vincent Baglin, the leader of the LHC beam vacuum section at CERN. “We always have to check and crosscheck to minimize any problems. This is a simple test that can prevent complicated issues.”

What they were actually looking to test are the connections between magnets, which are at risk of deterioration as temperature changes since they’re installed at room temperature, but need to operate below freezing when experiments are made. The LHC has 17 miles in circumference, but it’s not entirely circular; instead, it’s made out of eight straight sections, joined together by eight arcs.  More than 1600 magnets bend and focus the beams of particles that circle the collider at close to the speed of light. Interconnections, some of which resemble long, copper fingers, ensure that electricity flows from one magnet to the next.

This rather significant temperature difference causes these copper fingers to contract, typically by 40 millimeters, which isn’t necessarily a problem, but sometimes one or more of these fingers buckles and blocks particle beams. Since there are so many interconnections, if a problem arises, the researchers would have to start and shutdown the LHC repeatedly and find where the beam is blocked – a process which might take months. Instead, the scientists have opted for a more ingenious solution that only takes 15 minutes per section.  Rather than sending a beam through the pipe, they send the RF ball. How do they know if a connection is out of order? Simple, if the ball gets stuck, then we’ve got a problem.

For today’s test, the LHC passed without any issues, however it will pass through many such tests and others before its scheduled restart in 2015.

via Symmetry Mag

 

RelatedPosts

The Higgs boson was initially called the ‘goddamn particle’
Large Underground Xenon experiment fails to detect dark matter
People find out that CERN trapped antimatter for over 15 minutes
Antimatter captured at CERN
Tags: large hadron collider

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

CERN Creates Gold from Lead and There’s No Magic, Just Physics

byMihai Andrei
3 months ago
Cosmology

What is the Standard Model of Particle Physics?

byRob Lea
4 years ago
The ALICE detector at CERN is investigating the conditions in the early universe by creating quark-gluon plasma and bottomonium particles (Author’s own)
Discoveries

Quark-Gluon Plasma that filled the early Universe investigated by ALICE

byRob Lea
6 years ago
Illustration of event in which Higgs boson decays into two botom-quarks (Blue cones), in association with a W boson decaying to a muon (red) and a neutrino. Credit ATLAS/CERN.
News

At Last, Scientists Spot Higgs Boson Decaying into Fundamental Particles

byTibi Puiu
7 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.