Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
Home Research Inventions

Skin-like material that stretches and senses might bring the tactile to the artificial

by Tibi Puiu
October 26, 2011
in Inventions, Nanotechnology, Technology
Share on FacebookShare on TwitterSubmit to Reddit

Captioned above is the Stanford University developed transparent sensor, which is capable of stretching to great lengths without getting deformed. (c) Stanford University
Captioned above is the Stanford University developed transparent sensor, which is capable of stretching to great lengths without getting deformed. (c) Stanford University

In the new mobile information age where smartphones have become an ever common part of our lives, there seems to be a dominant trend which tends to incorporate interactive touch screen capabilities to more and more consumer electronics. It’s pretty clear that our electronics are getting smarter day by day – I, for one, am still waiting for the next generation of vacuums to outwit me – and as such, the demand for innovative interactive tech is high.

Researchers at Stanford University have made a great forward in this sense after they developed a highly ductile smart-material, filled with sensors, while has the capability to stretch and return to its original size without a problem; much like the human skin. The material is made out of two layers of sillicon, coated by extremely thin single-walled carbon nanotubes, which basically act like two parallel plates. When one of the layers is pressed, the distance between the layers becomes thinner, the capacity of the sensor is increased. Silicone can store electrical charge, and thus whenever this charge is modified by pressing the plates, it is quantified by the sensors which can correlate the charge to a pressure. Basically, the material can feel, or rather sense.

RELATED: Scientists create artificial muscles from nanotubes 

The highly important stretching ability is offered by the carbon nanotubes characteristics. After being sprayed on to the sillicone layer, they randomly positioned themselves. When they are tensioned, the nanotubes stretch orientating towards the stretch direction, only to revert to their exact initial position when released.

The stretchy sensor can detect a wide array of touches, according to Darren Lipomi, a postdoctoral researcher on the team. Just like skin, the material can sense whether it’s being pressed or pinched.

ALSO READ:  Foam produced during mating of tropical frogs could improve drug delivery through the skin

YouTube video

Applications are numerous, the most realistic example being the prosthetic industry. However, think of robots capable of extremely sensitive manipulations, instead of the stiff maneuvers conventional robots have today. You wouldn’t want to shake hands with a robotic arm, nowadays.

wired

Tags: carbon nanotubesnanotubesskin

ShareTweetShare
ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.