ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Climate

Trigger for Earth’s last ‘big freeze’ located by geoscientists

Tibi PuiubyTibi Puiu
November 6, 2012
in Climate, Environmental Issues, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

Some 12,900 years ago, a massive flood of melted freshwater in the Arctic caused a 1,200-year-long chill nicknamed the “Big Freeze.” During this time much of the Northern Hemisphere was engulfed by centuries of cold, which caused the extinction of most great mammals, like mammoths, as well as the Clovis people. For decades, scientists have been debating from where and how did the freshwater flood flow. Now, a team of scientists may have finally reached a conclusion after they devised a computer model.

Technically known as the Younger Dryas, this specific period wasn’t a glacial period or what’s commonly referred to as an “ice age”, since it was a cold time in an otherwise warm span between ice ages. In other words, the Big Freeze wasn’t part of the Earth’s natural warm/cold cycle, it was triggered by an event. Previous theories held that a cosmic impact caused the Big Freeze, however recently scientist have reached to a common conclusion that a vast pulse of freshwater is to blame.

A new model of flood waters from melting of the Laurentide Ice Sheet and large glacial lakes along its edge that covered much of North America from the Arctic south to New England over 13,000 years ago, shows the meltwater flowed northwest into the Arctic first. This weakened deep ocean circulation and led to Earth’s last major cold period.The direction of meltwater drainage is shown by the yellow arrows. The approximate position of the ice sheet is shown (in white) just before the onset of the Younger Dryas. The ocean colors are surface salinity from the control integration with warm (cold) surface currents shown in red (blue). (c) Alan Condron, UMass Amhers
A new model of flood waters from melting of the Laurentide Ice Sheet and large glacial lakes along its edge that covered much of North America from the Arctic south to New England over 13,000 years ago, shows the meltwater flowed northwest into the Arctic first. This weakened deep ocean circulation and led to Earth’s last major cold period.The direction of meltwater drainage is shown by the yellow arrows. The approximate position of the ice sheet is shown (in white) just before the onset of the Younger Dryas. The ocean colors are surface salinity from the control integration with warm (cold) surface currents shown in red (blue). (c) Alan Condron, UMass Amhers

The source of this great flood was the massive glacial Lake Agassiz, located along the southern margin of the Laurentide Ice Sheet, which at its maximum 21,000 years ago was 6,500 to 9,800 feet (2,000 to 3,000 meters) thick and covered much of North America, from the Arctic Ocean south to Seattle and New York. Researchers believe the flood was caused by a sudden melting of an ice dam. The subsequent massive influx of freshwater diluted the circulation of saltwater in the North Atlantic, disrupting the ocean “conveyer belt” that transports heat to Europe and North America. The weakening of this circulation caused by the flood resulted in the dramatic cooling of North America and Europe.

Until recently, however, scientists weren’t sure whether the meltwater flowed northwest into the Arctic first, or east via the Gulf of St. Lawrence.

“This episode was the last time the Earth underwent a major cooling, so understanding exactly what caused it is very important for understanding how our modern-day climate might change in the future,” says Condron of UMass Amherst’s Climate System Research Center

Working with Peter Winsor at the University of Alaska, Condron used a high resolution, global, ocean-ice circulation model that is 10 to 20 times more powerful than previously attainable, to compare how different drainage outlets was delivered to the sinking regions in the North Atlantic. If Lake Aggasiz drained into the North Atlantic down the St. Lawrence River then the thermohaline circulation would have weakened by less than 15 percent. In contrast, when the meltwater first drains into the Arctic Ocean, narrow coastal boundary currents can efficiently deliver it to the deep water formation regions of the sub-polar north Atlantic, weakening the thermohaline circulation by more than 30 percent.

These findings hint that shifts in the flow of water in the Arctic could dramatically alter today’s climate.

“However, in our modern-day climate, there are no sources of freshwater as large as the glacial lakes or Laurentide Ice Sheet readily available to suddenly flood into the ocean,” Condron said. “As a result, we should be cautious using this study as an analog for what might trigger modern-day abrupt climate change.”

The researchers are able, however, to put their model to good use in other instances, though far less extreme, like studying the effects of the potential melting of large ice sheet over Greenland and changes in the hydrological cycle, such as increased river runoff of the Arctic in the near-future.

RelatedPosts

Unstable climate led to the abandonment of Mayapan and a partial collapse of the Mayan Empire
The surprising link between climate inequality and racism
World leaders convene for COP22 in Marrakech to turn promises into action
Well-managed solar panels are actually good for wildlife

Findings were published in the journal Proceedings of the National Academy of Sciences.

Source: University of Massachusetts at Amherst

Tags: arctic iceclimate changeClovis cultureYounger Dryas

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Climate

White House Wants to Destroy NASA Satellites Tracking Climate Change and Plant Health

byMihai Andrei
5 days ago
Climate

This Is the Oldest Ice on the Planet and It’s About to Be Slowly Melted to Unlock 1.5 Million Years of Climate History

byTibi Puiu
3 weeks ago
Climate

Deadly Heatwave Killed 2,300 in Europe, and 1,500 of those were due to climate change

byMihai Andrei
1 month ago
Climate

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

byMihai Andrei
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.