ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Bacteria growth limited by time, not only concentration. Revises 1950’s Alan Turing theory

Tibi PuiubyTibi Puiu
October 9, 2013
in Biology, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

How do organs such as the heart or kidneys know when to stop growing? A number of theories have been proposed to answer this, the most entrenched of which dating back from 1952, when the infamous Alan Turing used math to show how biological cell patterns form and how these knew when to stop division. Turing envisioned that the cells knew when to stop growing based on their concentration in a certain location. Researchers at Duke University designed a gene circuit to coax bacteria to grow in a predictable ring pattern. Their findings suggest that the bacteria can sense their environment and that the  engineered gene circuit functions as a timing mechanism. Counter to established theories, the findings may have profound implications in biotechnology.

Ring patterns form in a micro-colony of engineered bacteria. Credit: Stephen Payne, Pratt School of Engineering, Duke.
Ring patterns form in a micro-colony of engineered bacteria. Credit: Stephen Payne, Pratt School of Engineering, Duke.

The team of researchers were led by associate professor of biomedical engineering Lingchong You.

“Everywhere you look in nature there are patterns, many of them very beautiful and even inspirational,” said You. “Our work adds another dimension to the general principles of pattern formation.”

Alan Turing was very fascinated about pattern formations in nature and fractals. The scientist was a particularly gifted mathematician with a keen eye for patterns. It’s worth noting, that Turing, among other scientific contributions of invaluable worth (Turing machine), was the man who broke the Nazi Enigma code, shortening WWII. Unfortunately, Turing was disgraced by his home country due to his sexual orientation, fact that led to his regrettable suicide.

Nevertheless, Turing’s legacy with biological patterns still lives on. In the 1950’s, he imagined that biological patterns are formed due to interactions of certain chemicals he called  “morphogens” that initiated and directed patterns by triggering on- or off-switches. Using math, Turing showed that morphogens could move in space, revealing patterns that mimic those seen in animal skins and leaf shapes. His model became the de facto leading theory regarding biological pattern formation.

A new dimension to bio-pattern growth: time

After using molecular biology lab techniques, however, You and colleagues were unable to replicate a biological pattern predicted by Turing’s model. The Duke researchers engineered a version of the favored lab pet bacteria, E. Coli, to produce two molecules. One serving as the “on” switch promoting colony growth and replication, and the other acting as an “off” switch that halted growth prompted by increase concentration of “on” molecules.

To better analyze colony growth and pattern formation, the researchers also engineered the bacteria to produce fluorescent colours. The ensuing patterns didn’t behave as the scientists initially predicted, though. Instead, the colonies were much smaller than the research team expected based on how fast the “on” signal should diffuse.

To solve the mystery, the scientists added a high concentration of the “on” signal to the growth chamber, flooding the bacteria with the signal. The bacteria formed the same distinctive ring pattern over the same time, which showed they weren’t responding to changes in the concentration of the “on” signal in space.

RelatedPosts

It takes about 200 hours with someone to turn them into a best friend, new study shows
Squids-protein modified bacteria used to develop camouflage coating
Pubic hair bacteria could be used to solve rape crimes
Nanoparticles gain the upper hand on antibiotic resistance, kill 92% bacteria

The only viable explanation, it seemed, was that the “on” molecules acted as a timing cue.  A mathematical model of the timing mechanism was made in order to test this idea. This model predicted how the cells would respond to changes in the size of their growth chamber. This was later confirmed by experiments.

“By serving as a timing cue, the morphogen ‘on’ signal enables the system to sense and respond to the size of the environment,” said You. “The larger the area, the longer it takes for the morphogen to accumulate to a high enough concentration to trigger pattern formation. As such, a larger area will lead to a larger ring pattern.”

Next, the researchers plan on using other gene circuits to create more intricate patterns. Using this technique and armed with new found knowledge on how bio patterns form, scientists could make finely tuned scaffolds for the production of new materials, such as thin metal films for energy applications.

The findings were presented in a paper published in the journal Molecular Systems Biology.  

Tags: bacteriabiological patternsfractalstime

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

Aging Isn’t a Steady Descent. Around 50, the Body Seems to Hit a Cliff And Some Organs Age Much Faster Than Others

byTibi Puiu
3 weeks ago
Biology

Scientists Taught Bacteria to Make Cheese Protein Without a Single Cow

byTudor Tarita
4 weeks ago
Chemistry

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

byMihai Andrei
4 weeks ago
Health

There might be an anti-aging secret hiding in magic mushrooms

byTudor Tarita
4 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.