ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Scientists sequence genome of Fleming’s original penicillin-producing fungus

The comparison could help us bring penicillin up to scratch.

Fermin KoopbyFermin Koop
September 28, 2020
in Diseases, Genetics, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A group of researchers successfully sequenced the genome of the mold that produced penicillin, the world’s first true antibiotic, using samples frozen alive more than fifty years ago. The team compared Alexander Fleming’s original sample of penicillium mold to two strains of mold now used to produce the substance today.

The freeze-dried Fleming strain from which the Penicillium fungus was grown and genome sequenced. Credit CABI.

Back in 1928, biologist Alexander Fleming noticed Penicillium mold growing in a culture of Staphylococcus aureus he was studying. It appeared the experiment was wrecked but Fleming noticed that where the mold grew, the bacteria didn’t. He later identified the chemical compound that was fatal to the bacteria and called it penicillin in honor of the humble mold.

Fleming froze samples of the mold that produced his first isolated samples of pure penicillin. More than 50 years later, a group of researchers at Imperial College London and the University of Oxford decided to look them up. They compared the samples with the genomes of two modern strains of Penicillium mold, now used in the United States.

“We originally set out to use Alexander Fleming’s fungus for some different experiments, but we realized, to our surprise, that no one had sequenced the genome of the original Penicillium, despite its historical significance to the field,” said Timothy Barraclaugh, co-author, in a statement.

The researchers found a subtle difference between the two genomes, which might help us better combat antibacterial resistance. Most antibiotics are based on chemicals that fungi or bacteria produce to defend themselves. If you get a dose of penicillin, it was likely produced by mold cultures, which are descendants of samples taken from moldy cantaloupes.

Over the years, antibiotics manufacturers bred their cantaloupe mold cultures to produce more penicillin. This means the genomes of modern industrial Penicillum mold are probably very different from their cantaloupe-eating ancestors.

The team looked at two sets of genes in particular. The ones that coded for chemicals called enzymes and the ones that control how much of an enzyme to make and when. They found that modern strains had more copies of the genetic instructions for making those enzymes, which meant those cells would make more enzymes and thus more penicillin.

While nature favors the traits that make mold more likely to survive and pass on its genes, artificial selection by humans cares about penicillin production over everything else. But Fleming’s mold and the modern strains used different versions of the enzymes that make penicillin. This could be due to evolution in the lab or because the strains are from different continents and evolved different enzymes.

RelatedPosts

Tiny fern has the world’s largest genome. It contains 50 times more genetic information than humans
Complete Neanderthal genome sequenced
Researchers make chicken cells resist bird flu by snipping out a tiny bit of their DNA
UK scientists want to modify genes inside a human embryo

If that’s the case, those different enzymes might produce different versions of penicillin. Still, there’s not enough data now to say exactly how the different enzymes impact the final product. The difference could lead to more efficient penicillin production, more effective penicillin, or a way to work around at least some of the resistance certain bacteria strains have evolved to the drug, the researchers believe.

“Industrial production of penicillin concentrated on the amount produced, and the steps used to artificially improve production led to changes in numbers of genes,” Ayush Pathak, lead author, said in a statement. “But it is possible that industrial methods might have missed some changes for optimizing penicillin design, and we can learn from natural responses to the evolution of antibiotic resistance.”

The study was published in the journal Scientific Reports.

Tags: fleminggeneticsgenomeMoldpenicillin

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
4 weeks ago
Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
3 months ago
Anthropology

Scientists Found a Neanderthal Population That Lived in Total Isolation for 50,000 Years

byTudor Tarita
3 months ago
Archaeology

Cats Came Bearing Gods: Religion and Trade Shaped the Rise of the Domestic Cat in Europe

byMihai Andrei
4 months ago

Recent news

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

August 19, 2025

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

August 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.