ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → World Problems

Researchers find out why swine flu is harder on some than others

Mihai AndreibyMihai Andrei
May 5, 2009 - Updated on October 27, 2017
in Health, World Problems
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Researchers hijack plant to produce polio vaccine
Bacteria steal genetic material from predator viruses using Spam gene
China confirms first human case of H3N8 bird flu strain
Billions of viruses are showering the planet’s surface in every moment

Despite the fact that some researchers claim the swine flu is already declining, we are still on the verge of a pandemic that threatens to spiral out of control if we don’t take action. However, the major problem was to understand the virus, because there are still many things we have yet to find out and we can’t act blindly.

Researchers from the Children’s Hospital of Philadelphia, Pennsylvania now have some important clues as to why influenza is more severe in some cases and milder in others. If you read their study that was published in the Journal of Leukocyte Biology you’ll find out that the virus can virtually paralyze the immune systems of humans that were otherwise healthy; this can lead to very severe bacterial infections including pneumonia. What’s even worse is that this can last for quite a while, and the cause for this has yet to be explained.

Kathleen Sullivan, M.D., Ph.D and senior researcher comments:

“We have a very limited understanding of why some people who get influenza simply have a bad cold and other people become very sick and even die. The results of this study give us a much better sense of the mechanisms underlying bacterial infections arising on top of the viral infection.”

“Despite major medical advances since the devastating flu outbreak of 1918 and 1919, influenza virus infection remains a very serious threat,” said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology, “and the current swine flu outbreak is a grim reminder of this fact. The work by Dr. Sullivan and colleagues brings us a step closer to understanding exactly what goes wrong in some people who get the flu, so, ultimately, physicians can develop more effective treatment strategies.”

Tags: influenzaSwine fluvirus

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Health

Some People Are Immune to All Viruses. Scientists Now Want To Replicate This Ability for a Universal Antiviral

byTibi Puiu
17 hours ago
Biology

Scientists discover a giant virus in the Pacific with the longest tail ever recorded

byTudor Tarita
3 days ago
Health

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

byTudor Tarita
2 weeks ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.