ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Paralyzed rats regain use of hind legs with flexible spinal cord implant. Humans to follow

Swiss scientists demonstrated a flexible ribbon-like implant that attaches itself to a paralyzed rat's spinal cord, allowing the animal to walk again. The prosthetic, described by foremost experts in the field as 'remarkable', works by delivering timed electrical impulses and drugs along the spinal cord. In this particular case, rats aren't that different from humans, and true enough clinical trials are now one step closer. In the future, paralysis might just be another word for "walking funny."

Tibi PuiubyTibi Puiu
January 13, 2015
in Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Footage of a paralyzed rat using his hind legs, which normally should have been completely numb. This from experiments performed last year, so this is an old implant - not the newly developed e-Dura. Image: CNET
Footage of a paralyzed rat using his hind legs, which normally should have been completely numb. This from experiments performed last year, so this is an old implant – not the newly developed e-Dura. Image: CNET

Swiss scientists demonstrated a flexible ribbon-like implant that attaches itself to a paralyzed rat’s spinal cord, allowing the animal to walk again. The prosthetic, described by foremost experts in the field as ‘remarkable’, works by delivering timed electrical impulses and drugs along the spinal cord. In this particular case, rats aren’t that different from humans, and true enough clinical trials are now one step closer. In the future, paralysis might just be another word for “walking funny.”

A breakthrough in medicine

The technology was first introduced by researchers at the Ecole polytechnique federale de Lausanne, Switzerland last year, when it was shown how a rat with a severed spinal cord could walk again after a system of electrical impulses and chemical reactions was introduced.  The brain moves the body by sending electrical signals down the spinal cord and into the nervous system. When the spinal cord is severed, the signals can no longer reach that part of the spine, paralyzing that part of the body. The idea is to direct electrical impulses below the cut, where signal from the brain discontinued. This is done via electrodes that take the place of the brain signal, along with neurotransmitting drugs to reanimate the nerve cells beneath the injured tissue. If you find this amazing, you’re not alone. Paralysis might become a thing of the past in just a few decades.

This is how the flexible e-Dura implant looks like. The implant is so effective because it mimics the soft tissue around the spine so that the body does not reject its presence. Image: EPFL
This is how the flexible e-Dura implant looks like. The implant is so effective because it mimics the soft tissue around the spine so that the body does not reject its presence. Image: EPFL

In practical terms, however, a surface implant on a human’s spinal cord is extremely tricky. Because it’s rigid, the constant friction causes local inflammation, damaging the surrounding area. The latest updates features a flexible implant specifically designed to integrate with the patient’s spine, minimizing the risk of rejection and further damage. Called E-Dura, the implant mimics the soft tissue around the spine – known as the dura mater – reducing the risk of inflammation, friction and abrasion.

[RELATED] Paralyzed rats regain control of their bladder

“Our e-Dura implant can remain for a long period of time on the spinal cord or cortex,” said Professor Stéphanie Lacour.

“This opens up new therapeutic possibilities for patients suffering from neurological trauma or disorders, particularly individuals who have become paralyzed following spinal cord injury.”

After implanting e-Dura in rats, researchers found there was no sign of damage or rejection following two months of observation. It goes without saying the the rats could walk once the implant was set.

e-dura2

The implant is made of silicon and covered with gold electric conducting tracks that can be pulled and stretched along with the silicon material. The electrodes, a new composite made of silicon and platinum microbeads, can be pulled in any direction. The two components act together and direct electrical signals to the spinal cord in the same manner as the brain would. Meanwhile, tiny microfluid channel embedded in the implant deliver neurotransmitter drugs.

RelatedPosts

Great Barrier Reef rodent becomes first extinct mammal at the hand of climate change
Brain-computer interface restores brain connectivity in injured rats
Scientists coax mice with injured spinal cords to regrow nerve fibers, something deemed impossible not too long ago
Paralyzed man can stand again after receiving stem cell treatment in Japan

“Soft flexible nerves connected to unyielding silicon and metal – the combination has spawned many a Hollywood cyborg,” wrote science writer Robert Service in Science.

“The implants Lacour’s team created still have to be wired to the out- side world to operate, but she and her colleagues are designing wireless versions of the technology. Watch out, Hollywood, reality is catching up.”

It’s heartwarming to hear that this isn’t the only effort that seeks to abolish paralysis. There are many projects worldwide hard at work developing the next generation of implants and drugs that will make paralysis a thing of history. For instance, another group at Cambridge University has restored movement in the hind legs of 23 dogs after they transplanted nerve cells from the animals’ noses.

The human trials may start as early as June of this year, at a special facility called the called the Gait Platform, housed in the University Hospital of Lausanne, Switzerland. The e-Dura implant was described in a paper published in Science.

Tags: implantparalysisrat

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

byMihai Andrei
2 months ago
Health

Paralyzed man can stand again after receiving stem cell treatment in Japan

byTibi Puiu
5 months ago
Future

3D Printed Penis Implant Restored Sexual Function in Rabbits and Could Help Humans Next

byTibi Puiu
5 months ago
Health

Human-like Teeth Grown in Pigs Could Make Dental Implants a Thing of the Past

byTibi Puiu
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.