ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Researchers coax neurons into regenerating and restore vision in mice

This could allow us to restore vision, mobility or fight diseases like Alzheimer's.

Alexandru MicubyAlexandru Micu
July 12, 2016
in Biology, Health, News, Research, Science, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

Stanford University researchers have developed a method that allows them to regrow and form connections between neurons involved in vision. The method has been only tested on mice but the results suggest that mammalian brain cells can be restored after being damaged — meaning maladies including glaucoma, Alzheimer’s disease, and spinal cord injuries might be more repairable than has long been believed.

Neurons are the building blocks of our nervous system.
Image via youtube

It has long been believed that mammalian brain cells can’t regrow, but the new study shows that it’s possible. The team reports that they’ve managed to regenerate the axons of retinal ganglion cells, and although fewer than 5 percent of cells responded to the method, it was enough to make a difference in the mice’s vision.

“The brain is very good at coping with deprived inputs,” says Andrew Huberman, the Stanford neurobiologist who led the work. “The study also supports the idea that we may not need to regenerate every neuron in a system to get meaningful recovery.”

“I think it’s a significant step forward toward getting to the point where we really can regenerate optic nerves,” says Johns Hopkins professor of ophthalmology Don Zack, who was not involved in the research. “[It is] one more indication that it may be possible to bring that ability back in humans.”

The study shows that a regenerating axon can grow in the right direction, forming the connections needed to restore function.

“They can essentially remember their developmental history and find their way home,” Huberman says. “This has been the next major milestone in the field of neural regeneration.”

Once central nervous system cells reach maturity, they flip a genetic switch and never grow again. The team used genetic manipulation to flip this switch back on, activating the so-called “mammalian target of rapamycin” (mTOR) signaling pathway, which helps stimulate growth. At the same time, they exercised the damaged eye by showing mice a display of moving, high-contrast stripes.

“When we combined those two [methods]—molecular chicanery with electrical activity—we saw this incredible synergistic effect,” Huberman says. “The neurons grew enormous distances—500 times longer and faster than they would ordinarily.”

They observed that by covering the mice’s good eyes so they looked at the stripes only with their damaged eyes, the neurons regenerated faster. The team used a virus to deliver the altered genes to their mice, but study co-author Zhigang He believes there may be simpler ways to achieve this, such as pills, for human treatment. He, who developed the mTOR procedure, isn’t sure how the findings will impact human patients. He notes that a dual procedure, similar to that they used for the rats, hasn’t yet been developed for humans. He also pointed out that our retinal cells would have to grow a lot more than a mouse’s to rewire vision.

“The human optic nerve has to regenerate not on the scale of millimeters but on the scale of centimeters,” he explains.

Further research is needed to figure out the best use of this method for patients.

“Before, there was nothing to do” about damage to retinal nerves or other brain cells, says He, whose lab studies both retinal and spinal cord damage. “Now, we need to think about what type of patient might be most likely to benefit from the treatment.”

Huberman hopes that his method will be usable within a few years to help patients with early-stage glaucoma avoid the degeneration that leads to blindness.

RelatedPosts

Sonic Hedgehog Gene makes sure all your limbs are in the right place
This Gene Explains Why Your Labrador Is Always Hungry — And Why Some Humans Struggle with Obesity
Georgetown University team found you can literally zap creativity into your brain
Death creeps through the brain as a “spreading wave” of silence and inactivity

“There are going to be many, many cases in which glaucoma could be potentially treated by enhancing the neural activity of retinal ganglion cells,” he says.

The findings also suggest that other brain cells could be determined to self-repair, Huberman says. Potential applications include restoring some movement after spinal cord damage, fighting memory-related diseases such as Alzheimer’s and even helping patients manage the symptoms of autism.

The full paper, titled “Neural activity promotes long-distance, target-specific regeneration of adult retinal axons” has been published in the journal Nature Neuroscience.

Tags: brainengeneeringeyesganglionsgeneticsNervessight

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
1 week ago
Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
2 weeks ago
Future

Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

byDobromir Rahnev
3 weeks ago
Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
4 weeks ago

Recent news

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

June 17, 2025

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

June 16, 2025

This new blood test could find cancerous tumors three years before any symptoms

June 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.