ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Highly controversial brain scan predicts whether criminals are likely to reoffend

Mihai AndreibyMihai Andrei
March 26, 2013
in Mind & Brain
A A
Share on FacebookShare on TwitterSubmit to Reddit

As the writers on Nature depict it, it evokes the dystopian worlds of science fiction writer Philip K. Dick – if you’ve read his works or seen Minority Report, you’ll understand it. Neuroscientists have developed a brain scan that shows how likely are convicted felons to commit crimes again.

Brain scanning felons

brain felon

Kent Kiehl, a neuroscientist at the non-profit Mind Research Network in Albuquerque, New Mexico, and his collaborators studied a group of 96 male prisoners just before their release. They used their functional magnetic resonance imaging (fMRI) to scan the prisoners’ brains during computer tasks in which the prisoners had to make rash decisions and inhibit impulsive behavior. They especially focused on a section of the anterior cingulate cortex (ACC), a small region in the front of the brain involved in motor control and executive functioning. After these tests, they followed their subjects for 4 years, to see how they do.

Subjects who had lower ACC activity during the quick-decision tasks were more likely to be arrested again after getting out of prison, even after researchers eliminated disturbing factors, such as age, sex, drug and alcohol abuse and psychopathic traits – bare in mind however, that the elimination of these parameters is never perfect, and always subject to either under or overestimation. en who were in the lower half of the ACC activity ranking had a 2.6-fold higher rate of rearrest for all crimes and a 4.3-fold higher rate for nonviolent crimes.

Treading on thin ice

minority report

First of all, even the researchers themselves agree that this is just an initial study, and much more data has to be gathered before this method can be considered even remotely viable.

“This isn’t ready for prime time,” says Kiehl.

Also, they underline that only high risk subjects should be taken into consideration, and not lower risk ones. But even so… Philip K. Dick raised the very thorny ethical issues of arresting people for crimes they didn’t commit. Of course, brain scans are much, much different than the psychic powers described in Minority Report, but let’s take a moment to ponder a case. Say you have a subject with a moderately to high risk; what do you do? You can’t arrest him for something he hasn’t committed, and you can’t say, keep some surveillance on him, because that may very well be the trigger that makes him snap and commit crimes again. If you ask me, this kind of technology, if available at some point, should be used to make low stake decisions, like which rehabilitation treatment to assign a prisoner or more often visits when on parole, rather than high stake ones, like actually giving parole or a bigger sentence.

RelatedPosts

Vegetative state man responds to Hitchcock clip
Brain imaging reveals the movies inside our mind
Humans are not unique in understanding the basics of language
Baby brain scans and machine learning algorithm can predict autism

“A treatment of [these clinical neuroimaging studies] that is either too glibly enthusiastic or over-critical,” says Tor Wager, a neuroscientist at the University of Colorado in Boulder “will be damaging for this emerging science in the long run.”

Tags: brain scanfMRI

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

Your Brain Could Reveal a Deadly Heart Risk. AI Is Learning to Read the Signs

byMihai Andrei
2 months ago
Mind & Brain

AI and Brain Scans Reveal Why You Struggle to Recognize Faces of People of Other Races

byTibi Puiu
3 months ago
Mind & Brain

Your Brain Data May be Up For Sale and It’s Totally Legal (For Now), Say U.S. Senators

byTudor Tarita
3 months ago
Health

There are actually 6 types of depression and anxiety. Each should be treated differently

byTibi Puiu
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.