Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Health & Medicine

Scientists find a way to transform cells into tiny lasers

Mihai Andrei by Mihai Andrei
July 27, 2015
in Health & Medicine, Nanotechnology, News
ADVERTISEMENT

Scientists have created a mixture of oil and fluorescent dyes that can be safely added to human cells – the dye then gets activated by short pulses of light and starts behaving like a laser, communicating the tissue’s position to doctors. The technology could add new ways for light to be used in diagnosis and treatment medicine.

An optical fibre is shown activating tiny lasers created within pig skin cells. Image credits: Matjaž Humar/Seok Hyun Yun

The system was devised by Seok Hyun Yun and Matjaž Humar, two optical physicists from Harvard University, and uses oil or fat droplets to reflect and amplify light, basically generating a laser whenever needed. With this, scientists could more easily identify affected cells or cancerous cells.

Yun had previously developed a similar technology, generating laser light by engineering cells to express a fluorescent jellyfish protein, then placing a single such cell between a pair of external mirrors. But this work takes it one step further, generating the laser from within. This also solves another problem – that of spectrum broadness.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

ADVERTISEMENT

Luminescent probes used for human cells are not a novelty, but the problem is that they have pretty broad emission spectra around 30-100 nanometres. This means that you can only use so many probes at once, as they can get confused with the broad background of natural emissions in the tissue. For these microlasers, the spectrum is more narrow, in the 500-800 nanometre range, making it easier to label cells with light, says Jeffrey Karp, a bioengineer at Brigham and Women’s Hospital in Boston, Massachusetts.

“One of the greatest implications of the work is to track thousands of cells simultaneously with a single technique,” he says.

Furthermore, researchers can vary the wavelength and tag individual cells to their liking. While the technology isn’t yet ready for medical use, it’s very promising.

“It will be fun or very exciting to adapt the knowledge that’s in the traditional laser community and explore that in this platform to optimize laser characteristics,” says Yun.

Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.