ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Scientists transplant lab-grown lungs into pigs — they worked fine

It's a landmark achievement in regenerative medicine.

Tibi PuiubyTibi Puiu
August 1, 2018
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: University of Texas Medical Branch at Galveston.
Credit: University of Texas Medical Branch at Galveston.

In a landmark study of regenerative medicine, researchers at the University of Texas Medical Branch (UTMB) have transplanted bioengineered lungs into adult pigs, with no visible complications. This puts us one step closer to providing human patients in dire need of a transplant with the organs they need to survive.

According to the U.S. Department of Health & Human Services, 20 people die each day waiting for a transplant. Lung transplants are particularly problematic, with the number of people requiring one increasing worldwide, while the number of available transplantable organs has decreased. Lungs are harvested from only 15 percent of all cadaveric donors, whereas kidneys and livers are harvested from 88 percent and hearts from 30 percent of deceased donors

The first human lung transplant procedure was performed in 1963, and the recipient survived 18 days, ultimately succumbing to renal failure and malnutrition. Over time, the number of lung transplant procedures has increased, and the operation is now an accepted treatment for end-stage lung disease. In 2015, there were 4,122 adult lung transplants reported — and that’s not nearly enough. But what if it was possible to grow new, personalized organs for each patient in need of a transplant? Certainly, thousands of lives would be saved each year — and, today, we’re nearing such a goal.

“Our ultimate goal is to eventually provide new options for the many people awaiting a transplant,” said Nichols, professor of internal medicine and associate director of the Galveston National Laboratory at UTMB.

For years, Joan Nichols and Joaquin Cortiella from The University of Texas Medical Branch at Galveston have been working on bioengineering lungs. In 2014, they were the first to grow lung cells in a lab, and their method has been refined ever since to the point that the team is now able to bioengineer transplantable lungs.

The challenges were numerous, of course. For one, in terms of different cell types, the lung is probably the most complex of all organs. For instance, the cells near the entrance are very different from those deep in the lung,

The procedure first starts with a support scaffold, a protein structure of collagen and elastin onto which the new lung will grow. The scaffold is placed in a tank filled with a solution made of nutrients and the pig’s own lung cells, following a carefully designed protocol.

For 30 days, the bioengineered lungs grew in a bioreactor before being transplanted into adult pigs. The medical condition of the animals was assessed at ten hours, two weeks, one month, and two months following the operation, which allowed the team to construct a timeline of the lung tissue’s development. For instance, in just two weeks, the transplanted lungs had established a stable network of blood vessels, which it needs in order to survive.

RelatedPosts

If stem cells don’t grow as you want them to, just add a dash of parsley-husk scaffolding
Scientists grow mouse kidneys inside rats
This bacterium shoots wires out of its body to power itself
Researchers just got a group of bacteria to produce Paracetamol from plastic

All of the pigs that received the bioengineered lung remained healthy.

“We saw no signs of pulmonary edema, which is usually a sign of the vasculature not being mature enough,” the researchers wrote. “The bioengineered lungs continued to develop post-transplant without any infusions of growth factors, the body provided all of the building blocks that the new lungs needed.”

This study was only meant to evaluate how well a bioengineered lung could adapt to an adult host organism, with positive results so far. However, the team did not measure how much oxygenation the lungs had provided, which will be researched in the future. And, if all goes well, Nichols and Cortiella hope to grow and transplant bioengineered lungs into people within 5 to 10 years. Besides transplants, bioengineered lungs are a great testing medium for experimental drugs, another line of work that can save countless lives.

“It has taken a lot of heart and 15 years of research to get us this far, our team has done something incredible with a ridiculously small budget and an amazingly dedicated group of people,” they wrote.

The findings appeared in the journal Science Translational Medicine.

Tags: bioengineeringlungorgan transplant

Share116TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

Researchers just got a group of bacteria to produce Paracetamol from plastic

byMihai Andrei
2 months ago
Climate

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

byMihai Andrei
3 months ago
Biology

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

byMihai Andrei
4 months ago
Biology

In the quest for resurrecting the woolly mammoth, scientists first make “woolly mice”

byTibi Puiu
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.