ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Genetics

Exercising triggers chemical changes in DNA

Tibi PuiubyTibi Puiu
March 12, 2012
in Genetics, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

The People of Carthage Weren’t Who We Thought They Were
Researchers create bacteria synthetic DNA
Wheat’s genetic secrets could lead to better, more resilient crops
Scientists Finally Solve the Mystery of the Irish Potato Blight’s Origins. It Came From The Andes

A remarkable research whose findings recently published in the journal Cell, concludes that intense physical exercise leads to chemical alteration of the DNA, turning certain genes on and off. In fact, individuals which lead a relatively sedentary lifestyle changed the DNA in their muscle fibers almost immediately, after a strenuous 35 minute work-out.

Woman's workout  It’s important to note that the genetic code itself wasn’t altered, only the chemical tags. Genes, such as the one responsible for energy production, can be turned on and off through a process called methylation, in which a methyl group is added to a gene. When this happens, the chemical blueprint which instructs the production of certain proteins is modified. This might well explain why cells benefit from exercise, but begs an even more interesting question – “Do we carry some consequence of whether our parents were active or not?” asks study coauthor Romain Barrès of the University of Copenhagen.

Unfortunately, this questions wasn’t addressed in this particular research, which instead sought to track immediate chemical changes in the DNA and how other proteins recognize it, and thus regulate the production of specific proteins to support higher growth and the breakdown of sugar and fats with exercise.

The study focused on two groups of volunteers – those who had completed low- and high-impact cycling workouts. Biopsied cells from the volunteers’ thigh tissue was analyzed and revealed that muscle cells had fewer methyl groups attached to DNA and higher levels of blueprints for energy-regulating proteins after a hard work-out, compared with cells that had undergone a low-impact workout. What’s the bare minimum? According to the researchers, running or biking at a level of exertion where it’s hard to carry on a conversation for about 35 minutes.

“What this likely suggests is that if you did this early in life, while muscles were being developed, that might actually program the muscle,” says Michael Skinner, a researcher at Washington State University in Pullman.

The second leg of their study was at least as interesting. Calcium has been known to biologists for decades that it’s an inter-cellular signaling molecule, which informs muscles when they need to contract. The researchers bathed rat muscle cells into caffeine, which an agent that releases calcium from calcium-storage sites within muscle cells. What happened next was t the muscles were being tricked into think they were exercised. Also, it was observed that caffeine exposure also results in fewer methyl groups and more protein blueprints produced.

The researchers findings will most likely offer new insightful regarding the role of methylation muscle function and development, as well as hopefully motivate people to exercise more often. Hopefully, the researches will continue for where their left off and study whether these kind of DNA chemical modifications are transmissible to offsprings.

Tags: dnamethylation

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Genetics

UK Families Welcome First Healthy Babies Born With DNA From Three People

byTudor Tarita
3 weeks ago
ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
4 weeks ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
1 month ago
Health

Herpes Virus Hijacks Human DNA Within Just an Hour of Infection

byTudor Tarita
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.