ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Genetics

New anti-baldness treatment may grow new hair using patient’s own cells

Tibi PuiubyTibi Puiu
October 22, 2013
in Genetics, Health, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Anti-baldness treatments available today work by stimulating hair follicle health or slow down hair loss. There is no available method that promotes the growth of new hair, however. You might have heard of hair transplants, but this typically involves transplanting hair from another area of the hair, like the back of the head, to the bald area of the head – no new hair. Of course, you can transplant hair from a donor, so essentially you could get new hair, but this doesn’t work for everyone. About 90% of women, for instance, are not strong candidates for hair transplantation surgery because of insufficient donor hair. A new method that grows new human hair from the patient’s own cells may solve many of the issues involving hair loss.

 For the first time, researchers have been able to take human dermal papilla cells (those inside the base of human hair follicles) and use them to create new hairs. Image: Claire Higgins/Christiano Lab at Columbia University Medical Center.
For the first time, researchers have been able to take human dermal papilla cells (those inside the base of human hair follicles) and use them to create new hairs. Image: Claire Higgins/Christiano Lab at Columbia University Medical Center.

The dermal papilla cells  are small, nipple-like extensions at the surface of the skin. On the hands and feet, these form what’s colloquially known as fingerprints. On the scalp, however, these cells  nourish all hair follicles and bring nutrients and oxygen to the lower layers of epidermal cells, thus playing a pivotal role in hair formation, growth and cycling.

When put in a tissue culture, human dermal papillae revert to basic skin cells – something that has hindered past research.  Angela M. Christiano, PhD, from Columbia University Medical Center (CUMC) and colleagues, however, tried their luck with mice, which are well known for their high hair transplant success rate. In rodents, unlike humans, the dermal paillae don’t revert back, possibly because the cells tend to form clumps in tissue culture that allows the papillae to interact and release signals that reprogram the skin to grow new follicles.

Growing new human hair on the back of rodents

The researchers decided to combine human cells in a rodent culture. Dermal papillae cells were harvested from seven human donors and cloned  in a tissue culture. After a few days, these were inserted on the back of mice. They found that new hair continued to grow  for at least six weeks in five out of  the seven tests, with DNA analysis confirming that the new hair follicles genetically matched the human donors.

“This suggested that if we cultured human papillae in such a way as to encourage them to aggregate the way rodent cells do spontaneously, it could create the conditions needed to induce hair growth in human skin,” says CUMC’s Claire A. Higgins, PhD, who was first author of the study.

“This approach has the potential to transform the medical treatment of hair loss,” says Dr. Christiano. “Current hair-loss medications tend to slow the loss of hair follicles or potentially stimulate the growth of existing hairs, but they do not create new hair follicles. Neither do conventional hair transplants, which relocate a set number of hairs from the back of the scalp to the front. Our method, in contrast, has the potential to actually grow new follicles using a patient’s own cells. This could greatly expand the utility of hair restoration surgery to women and to younger patients – now it is largely restricted to the treatment of male-pattern baldness in patients with stable disease.”

[RELATED] Gray hair reversal process discovery by scientists

More tests need to be made before clinical trials on human might commence. Still, the researchers feel very confident their method will work. Of important note is that the method might be used to promote new hair growth on burned skin as well.

“We also think that this study is an important step toward the goal of creating a replacement skin that contains hair follicles for use with, for example, burn patients,” adds Dr Jahoda.

RelatedPosts

Scientists find a potential cure for baldness
World’s oldest fillings come from the stone age and they’re basically asphalt
Scientists may have uncovered why hair turns gray as we age
3300 years ago, Egyptian women were using extensions and dyeing their hair

Findings appeared in the journal Proceedings of the National Academy of Sciences (PNAS).

Tags: baldnessfollicleshairhair loss

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Science

Sugar found in DNA could rival minoxidil in the fight against baldness (without the nasty side effects)

byTibi Puiu
5 months ago
Health

Innovative hair loss treatment can restore 90% of lost hair

byMihai Andrei
9 months ago
Health

Scientists Discover Natural Sugar That Reverses Hair Loss Without Side Effects

byTibi Puiu
11 months ago
Biology

A painless microneedle patch reverses hair loss in mice. Can it work in humans?

byRupendra Brahambhatt
12 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.