ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Anthropology

First ancient African genome sequenced

The complete genetic code book of a person who lived 4,500 years ago in Ethiopia was completed by US researchers. Although much older genomes have been sequenced, like those of 38,000 year-old Neanderthals, samples from African forefathers have proven difficult to sequence as the DNA is often destroyed by accelerated decay, driven by tropical conditions. As such, this is the first time a complete genome retrieval was performed from an ancient human in Africa. In this light, the findings are very important: they suggest even older DNA could be retrieved - maybe even millions of years back to the age of other species of the homo genus.

Tibi PuiubyTibi Puiu
October 9, 2015
in Anthropology, Genetics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Big dinosaur is a big piece of evidence for Africa’s geological past
Wildfires in Africa keep the Amazon lush with fertilizing smoke
Ancient Africans played mancala board games etched in rock thousands of years ago
Artifacts hint that modern human culture may have emerged in Africa 20,000 years earlier

The complete genetic code book of a person who lived 4,500 years ago in Ethiopia was completed by US researchers. Although much older genomes have been sequenced, like those of 38,000 year-old Neanderthals, samples from African forefathers have proven difficult to sequence as the DNA is often destroyed by accelerated decay, driven by tropical conditions. As such, this is the first time a complete genome retrieval was performed from an ancient human in Africa. In this light, the findings are very important: they suggest even older DNA could be retrieved – maybe even millions of years back to the age of other species of the homo genus.

The site from the  Mota cave where the 4,500 Ethiopian man was found. Image: Kathryn and John Arthur
The site from the Mota cave where the 4,500 Ethiopian man was found. Image: Kathryn and John Arthur

After a creature dies, enzymes start breaking down the nucleotides (genetic letters) that form DNA and bacteria and other microorganisms speed the decay. If water is present – and it almost always is, especially in the soil where bodies are buried – the nucleotide bond disintegration is even faster. Previously palaeogeneticists  discovered that DNA has a half-life of 521 years, meaning after 521 years, half of the bonds between nucleotides in the backbone of a sample would have broken; after another 521 years half of the remaining bonds would have gone; and so on. Considering ideal preservation conditions like  −5 ºC temperature, DNA could be readable for 6.8 million years. In practice, it starts breaking down much faster becoming barely usable after just 1.5 million years past which the remaining strands would be too short to give meaningful information.

It wasn’t until scientists had found clever ways to stitch together DNA fragments that genome sequencing of ancient fossils really took off. Humans in Asia and Europe who lived tens of thousands of years ago had their genetic makeup analyzed, and this way scientists had been able to retrace migration patterns and understand how populations mixed together and moved from place to place. One of the most important study to do this was led by Ron Pinhasi, an archaeologist at University College Dublin, who found that the best place to look for genetic makeup is the bone surrounding the inner ear.

It’s quite remarkable how much you can tell from a person’s DNA. Case in point, you can retrieve valuable information not only of the individual himself but also his lineage. For ancient Africans, however, this has proven problematic because the tropical conditions obliterate DNA. Luckily, John W. Arthur and Kathryn Weedman Arthur, archaeologists at the University of South Florida were able to find a mint conditioned specimen at the Mota cave, in the highlands of southern Ethiopia. They sent the inner bone of the ancient Ethiopian man to Pinhasi hoping he might be able to tell them something. To everyone’s surprise, Pinhasi was able to extract the man’s full genome, who lived and died around 3,000 BCE.

“What we were able to get is a few very high quality undamaged DNA from which we could reconstruct the whole genome of the individual”, said senior author Dr. Andrea Manica from the University of Cambridge’s Department of Zoology.

Apparently the man from Mota had brown skin and brown eyes, and also bore the same genetic adaptations found in modern day Ethiopian highlanders that helped them cope better with the lower temperature and oxygen levels. What’s most interesting is that the Mota man didn’t have any trace of Indo-European DNA, despite modern day people in Nigeria have 7% Indo-European DNA and the  Mbuti pygmies who live in the rain forest in the Democratic Republic of Congo have 6%. This implies two possibilities: either the Mota man was part of a tribe who had managed to stay isolated from other tribes, local or foreign, and bred only among themselves or, more likely, Indo-Europeans hadn’t arrived in Ethiopia 4,500 years ago in what’s called a backflow. Initially, humans left Africa between 100,000 and 50,000 years ago settling in Europe and Asia. Then some populations, which became genetically distinct, came back to Africa and bred with the native African populations causing a genetic backflow. To know for sure, the Arthurs and Pinhasi should retrieve more DNA from ancient Africans.

Tags: africagenome sequencing

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Animals

Dehorning Rhinos Looks Brutal But It’s Slashing Poaching Rates by 78 Percent

byTudor Tarita
2 days ago
Animals

This Wildcat Helped Create the House Cat and Is Now at Risk Because of It

byPetro Kotzé
4 days ago
A left lateral view of a common bed bug, Cimex lectularius. Original image sourced from US Government department: Public Health Image Library, Centers for Disease Control and Prevention. Under US law this image is copyright free, please credit the government department whenever you can”.
Biology

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

byMihai Andrei
6 months ago
Biology

Researchers Decode the Genome of a Fungus That Turns 80% of The Flies in Your Home Into Zombies

byTibi Puiu
9 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.