ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Exercise, fasting boosts cellular cleanup of defective proteins

Defective and toxic proteins in cells are cleared more easily with a healthy lifestyle.

Tibi PuiubyTibi Puiu
February 27, 2019
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Cell
Credit: Pixabay.

The human body is comprised of systems, which are composed of organs, which are composed of tissue, which are composed of cells. It follows that the body’s physiology is directly linked to cellular performance and health. One of the essential mechanisms that ensure cells function properly is the removal of waste proteins — and according to a new study, both exercise and fasting can boost this process.

Turbocharging waste removal

A research group at the Harvard Medical School led by Alfred Goldberg, professor of cell biology, is known for its groundbreaking work in protein-disposal systems. Previously, Goldberg’s lab showed that certain drugs can boost the levels of a molecule called cAMP, triggering a cascade of effects which lead to the removal of junk proteins. This occurs when ubiquitin molecules mark old, defective, and toxic proteins for destruction by the cell’s protein-disposal unit, known as the 26S proteasome. This process is called the ubiquitin-proteasome pathway, or the ‘kiss of death’ as some scientists poetically refer to it.

Stimulating the destruction of defective or toxic proteins is important for certain individuals where this pathway is slow. Mutated proteins are particularly threatening since their buildup can lead to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s. Over-stimulation can also be a problem as excessive protein removal can lead to muscle wasting in cancer patients or cause muscle atrophy.

In a new study, Goldberg and colleagues have found that the same cellular quality control can be regulated independent of drugs, through fluctuations in hormone levels triggered by exercise or fasting. Experiments were carried out with four human volunteers, in the case of exercise, and mice, in the case of fasting. The researchers found that exercise led to greater levels of cAMP, thus producing more molecular marks for protein degradation. Fasting for 12 hours produced similar effects on the protein-breakdown pathway, enhancing its activity in the muscle and liver cells of mice.

In another round of experiments, the researchers showed that an array of hormones, including glucagon (glucose stimulant), epinephrine (also known as adrenaline, which boosts muscle strength during stress), and vasopressin (the antidiuretic hormone that helps the body retain water), were involved in protein degradation.

“Our findings show that the body has a built-in mechanism for cranking up the molecular machinery responsible for waste-protein removal that is so critical for the cells’ ability to adapt to new conditions,” Goldberg said in a statement.

“This is truly a new way of looking at whether we can turn up the cellular vacuum cleaner,” Goldberg said. “We thought this would require the development of new types of molecules, but we hadn’t truly appreciated that our cells continually activate this process.”

The benefits of exercise and fasting are, by now, well documented. Even moderate amounts of daily physical activity protect the brain, heart, and other important organs, keeping the body young and the mind fresh. Meanwhile, fasting has been shown to improve cellular regeneration and increase lifespan. The new findings now suggest that exercise and fasting may reduce the risk of developing conditions associated with the accumulation of misfolded proteins. In the future, this newly identified pathway for protein degradation could be the object of novel therapies.

“The beauty and the surprise of it is that such new treatments may involve churning a natural endogenous pathway and harnessing the body’s pre-existing capacity to perform quality control,” Goldberg said.

The findings appeared in the journal PNAS.

RelatedPosts

Is tofu protein? A comprehensive look at tofu’s nutritional profile
Masks made of ostrich cells make COVID-19 glow in the dark
Immortal cells could usher in the age of plentiful, artificial blood for transfusions
New study wants to tackle depression, obesity, chronic pain by blocking a single protein
Tags: cellprotein

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Aging Might Travel Through Your Blood and This Protein Is Behind It

byTibi Puiu
2 weeks ago
Biology

Your Cells Can Hear You — And It Could Be Important for Fat Cells

byAlexandra Gerea
4 months ago
Biology

Scientists Discover Largest Protein Hidden in Toxic Algae

byTibi Puiu
1 year ago
Future

Turning off a single protein extends mice’s lifespan by 25%

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.