ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Diseases

This map predicts where coronavirus might strike next

The model uses statistical tools and travel analysis to assess what are the likely routes the virus could take.

Mihai AndreibyMihai Andrei
February 11, 2020 - Updated on March 4, 2020
in Diseases, Health
A A
Share on FacebookShare on TwitterSubmit to Reddit

We already have an interactive map showing where coronavirus cases are happening — now, a new model tries to predict where the virus might strike next.

A model showing the probable routes the coronavirus could take to spread from the Beijing airport. The bigger the bubble, the greater the risk. Image credits: Dirk Brockman.

There are currently over 40,000 confirmed coronavirus cases worldwide, with over 1,000 fatalities. The outbreak is increasingly looking like a pandemic and health officials are concerned that the disease might start to spread globally. Currently, around 99% of all cases have been reported in China and there is no indication that the virus is reproducing in other countries — but if this does happen, the results could be disastrous.

With this in mind, a team of researchers from the Humboldt University of Berlin and the Robert Koch Institute devised a model to predict relative risk for coronavirus spread (the computational model is presented in detail here). Aside from confirmed cases, the model is based on international air transport trends, including 4000 airports with more than 50000 flight routes.

The spread of the virus on an international scale is dominated by air travel — in China, the virus had spread to several provinces before Wuhan (the city where the outbreak originated) was quarantined. This is why air traffic is so significant here.

Asian countries are most at risk, though the US and Australia also are also at significant risk. Beyond China, Thailand is the most likely to have infected people arrive at its airports.

The interactive chart shows the most at-risk airports from different countries. Here, the airports from Japan are highlighted. Image credits: Dirk Brockman.

After Thailand, Japan is the most at-risk country — but interestingly, Osaka’s international airport is more at risk than Tokyo’s airport, due to the travel patterns from infected areas — the interactive chart shows individual risks when you click a country.

However, it’s important to note that by far, most cases have occurred in China — as researchers also illustrate.

Image credits: Dirk Brockman.

How should we deal with this model?

Bear in mind that this is not an absolute prediction or a tool that should be used to make quantitative assessments — it shows relative risks more than anything else.

RelatedPosts

Researchers create a filter for N95 face masks that can be attached and replaced
COVID-19 asymptomatic cases account for 20% of infections, much less than thought
“This is not a drill” — it’s time to pull all the stops on the coronavirus, World Health Organization urges
Why is pork bad for you — a look at what the science says

This is particularly useful to enable health workers to gain an intuitive understanding of where the virus might be spreading to next. The main focus of the model is “Ro” — which represents how many people each infected person can infect without external intervention (such as face masks or quarantines). The model also considers the incubation period, as well as other parameters affecting the disease spread.

This Ro number (pronounced “R zero”) does not change during an outbreak: it is a fixed contagiousness factor. In the case of the novel coronavirus, most models estimate that Ro is between 2 and 3 — meaning that an infected person, on average, will infect 2-3 others.

https://www.zmescience.com/coronavirus-news-information-data/

But this is just an average. Some people won’t infect anyone else, whereas others will infect more, and it’s hard to model who will spread the virus more.

How much an outbreak spreads is an interplay between Ro, incubation conditions, and travel conditions. Although the model is qualitative and not quantitative, it can offer important insights and help direct policy.

For instance, quarantining Wuhan is unlikely to make a significant difference at this point. But the quarantine poses an important social and economic stress, making it difficult to bring goods in and out of town, and threatening many citizens’ livelihoods.

Several other models have been presented in preprint servers and peer-reviewed journals, some more ambitious than others. With enough quality and robust data, models can start to forecast how the outbreak will take shape. The bad news is that this is still a relatively new situation, and gathering robust data is a challenge. The good news, however, is that researchers can ground-proof their models every single day, by seeing how the situation escalates.

Most models seem to suggest that outside of China, the risk is relatively low — and China has a good chance of containing the outbreak, a remarkable achievement.

Tags: coronavirushealth

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

a cat napping
Health

Does a short nap actually boost your brain? Here’s what the science says

byMihai Andrei
4 weeks ago
Health

AI Can Hear Cancer in the Voice Before Doctors Can Detect It

byMihai Andrei
1 month ago
Health

7,000 Steps a Day Keep the Doctor Away

byTudor Tarita
2 months ago
Health

The surprising health problem surging in over 50s: sexually transmitted infections

byMihai Andrei
5 months ago

Recent news

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

September 15, 2025

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

September 15, 2025

New Type of EV Battery Could Recharge Cars in 15 Minutes

September 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.