ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

How cells and cell fragments move in opposite directions in response to electric field

Tibi PuiubyTibi Puiu
April 8, 2013
in Biology, Health
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at  University of California, Davis have shown for the first time how whole cells and fragments orient and move in response to electrical stimuli like an electric field. Surprisingly enough, their results show that whole and fragments move in opposite directions, despite being governed by the same electric field. The findings help better our understanding of how the human body heals wounds and allow for more effective stem cell therapies.

cell-electric-field Ever wondered how your tissue recovers so wonderfully after a wound, like a cut for instance? Tissue regenerates work by cell regrowth and transfer, in a process so fine and precise that it resembles an army of super-engineers hard at work mending a damaged skyscraper. How does the body know it’s wounded, though? Well, all the cells in our body follow an electric field and as such a flux of charged particles travel between layers of cells. When a wound occurs, this flux is disrupted just like a short-circuit. As the flux’s direction is changed, a new electric field is created which naturally leads cells into the wounded tissue. Why and how precisely this happens isn’t quite clear to researchers at the moment.

“We know that cells can respond to a weak electrical field, but we don’t know how they sense it,” said Min Zhao, professor of dermatology and ophthalmology and a researcher at UC Davis’ stem cell center, the Institute for Regenerative Cures. “If we can understand the process better, we can make wound healing and tissue regeneration more effective.”

For their research, the UC Davis scientists chose to work with cells that join together to form a fish scales structure, known as  keratocytes. These cells are common lab pets and are favored by scientists because they shed cell fragments, wrapped in a cell membrane but lacking a nucleus, major organelles, DNA or much else in the way of other structures. Both whole cells and fragments were exposed to an electric field.

To better understand how a cell acts when its stimulated by electricity, it’s better if you imagine it as  a blob of fluid and protein gel wrapped in a membrane. Cells move about by sliding and ratcheting protein fibers inside the cell past each other, advancing the leading edge of the cell while withdrawing the trailing edge. When the lab cells were exposed to the electric field, actin protein fibers collected and grew on the side of the cell facing the negative electrode (cathode), while a mix of contracting actin and myosin fibers formed toward the positive electrode (anode).

Basically, a tug of war is ensued between the two mechanisms, each striding to pull the cell towards a direction. In whole cells, it was observed that the actin mechanism won and propelled the cells towards the cathode. However, for cell fragments the myosin fibers mix won and pushed fragments towards the anode – opposite to the whole cells. It’s the first time that such basic cell fragments have been shown to orient and move in an electric field, according to Alex Mogilner, professor of mathematics and of neurobiology, physiology and behavior at UC Davis and co-senior author of the paper.

Their findings show that there are at least two mechanisms through which cells respond to electric fields, and one of these distinct pathways can work without a cell nucleus or any of the other organelles found in cells, beyond the cell membrane and proteins that make up the cytoskeleton. The most likely explanation, the researchers note, is that the electric field causes certain electrically charged proteins in the cell membrane to concentrate at the membrane edge, triggering a response.

RelatedPosts

The birth of the world’s first chimeric monkey
Georgetown University team found you can literally zap creativity into your brain
The extracellular matrix, and how it keeps you in tip top shape
Photograph of nanobots killing off cancer

The findings were reported in a paper published in the journal Current Biology.

Tags: cellselectric fieldelectricitystem cells

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

News

What Would Happen If Everyone in the World Turned On The Lights At the Same Time?

byHarold Wallace
1 week ago
News

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

byTibi Puiu
1 month ago
Biology

These Bacteria Exhale Electricity and Could Help Fight Climate Change

byTudor Tarita
2 months ago
Health

First Stem Cell Nerve Therapy Meant to Reverse Paralysis Enters Clinical Trial

byTibi Puiu
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.