ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Researchers find a way to block alcohol addiction and ease withdrawal symptoms

Targetting a receptor in the brain could

Tibi PuiubyTibi Puiu
June 27, 2018
in Health, Mind & Brain, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
whisky
Credit: Pixabay.

More than 15 million Americans abuse alcohol, trapped in a downward spiral where they need to ingest more alcohol in order to ease severe withdrawal symptoms. Many admit they simply can’t help themselves. But the latest findings by Scripps Research scientists could be a silver lining for numerous struggling alcoholics. Researchers found that activating a receptor in the brain of alcohol-addicted rats induced them to drink less and eased withdrawal symptoms.

The brain’s seat for alcohol

More than a decade ago, researchers who were combing through the human genome looking for genetic sequences that resemble known receptors came across a G-protein coupled receptor (GPCR) called GPR139. This class of receptors plays a key role in brain signaling, some of which have been previously linked to mental disorders, such as depression, schizophrenia, and drug-induced psychosis.

Subsequent research had shown that GPR139 is primarily found in the habenula, a brain region that mediates some forms of emotive decision-making by influencing the release of dopamine and serotonin. For instance, by inhibiting dopamine-releasing neurons, habenula activation leads to the suppression of motor behavior when an animal fails to obtain a reward or anticipates an aversive outcome. Moreover, the habenula is involved in behavioral responses to pain, stress, anxiety, sleep, and reward.

Olivier George, associate professor at Scripps Research and lead author of the new study, suspected that GPR139 might play a role in addiction, seeing how the habenula is activated during drug and alcohol withdrawal.

“We’ve been very interested in the habenula because this is the area of the brain that produces withdrawal symptoms, which an animal or human then tries to avoid by taking another drink or another dose of a drug,” said George in a statement.

Olivier George, PhD, associate professor at Scripps Research. Credit: Scripps Research.
Olivier George, PhD, associate professor at Scripps Research. Credit: Scripps Research.

In an experiment, George and colleagues gave 12 non-alcohol-dependent rats and 17 alcohol-dependent rats an experimental compound called NJ-63533054, which activates GPR139. The drug had no effect on the alcohol intake of the non-alcohol-dependent rats. However, it significantly decreased the amount of alcohol ingested by the rats addicted to alcohol. 

The JNJ-63533054 compound was particularly effective for one-subgroup of rats: those that had the highest alcohol intake and showed compulsive drinking behavior. These rats had such a severe drinking problem that they would continue to ingest alcohol even when it was adulterated with a bitter taste, which should have normally been repulsive for them. This behavior suggests that the targeted receptor is activated when the rats are drinking a lot and going through withdrawal.

[RELATED] The science of hangovers

RelatedPosts

Alcohol doesn’t change our personality as much as we blame it
Drugs that cancel the buzz of alcohol are safe and efficient, meta-analysis confirms, but people don’t know about them
Fruit and nectar eaters are nature’s most resilient alcohol drinkers
Is cannabis addiction genetic? Scientists identify genes associated with cannabis use disorder

During alcohol withdrawal, the pain threshold in rats (and humans) is generally lower. In order to confirm their findings, the researchers tracked the pain threshold of 17 rats undergoing alcohol withdrawal. When the rodents were treated with JNJ-63533054, they later had a higher threshold for pain. Yet again, the effects were strongest in the rats with the most compulsive drinking behavior.

Finally, in another experiment, the researchers delivered JNJ-63533054 directly to small areas of the brain through thin tubes. Rats ingested less alcohol when the drug was sent to the habenula, but not other brain areas. This confirmed the habenula’s role in alcohol addiction.

The experiments were performed exclusively on male rats, but the researchers suspect that the findings should carry over female rats, too. What’s more, the habenula is involved in broader types of addiction, meaning JNJ-63533054 might ease other types of addiction, besides alcohol.

“The good thing about this type of target is that is almost exclusively expressed in the brain, which limits side effects, and it seems to have no effect on individuals who are not dependent,” says George. “Those are both positive indications of the receptor being druggable.”

The findings appeared in the journal eNeuro.

Tags: addictionalcohol

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Scientists Say Junk Food Might Be as Addictive as Drugs

byTudor Tarita
3 weeks ago
The injectable drug Ozempic is shown Saturday, July 1, 2023, in Houston. (AP Photo/David J. Phillip)
Health

Ozempic Users Are Seeing a Surprising Drop in Alcohol and Drug Cravings

byAlexandra Gerea
2 months ago
Health

Patients on Weight Loss Drugs Like Wegovy May Say They Just Don’t Want to Drink Anymore

byTudor Tarita
3 months ago
Animals

Scientists filmed wild chimpanzees sharing alcohol-laced fermented fruit for the first time and it looks eerily familiar

byTibi Puiu
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.