ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

New AI approach can spot anomalies in medical images with better accuracy

It can reduce the workload of physicians and improve the results of image analysis.

Mihai AndreibyMihai Andrei
November 12, 2021
in Health, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers have trained a neural network to analyze medical images and detect anomalies. While this won’t replace human analysts anytime soon, it can help physicians sift through countless scans quicker and look for any signs of problems.

Image credits: Shvetsova et al (2021).

If there’s one thing AI is really good at, it’s spotting patterns. Whether it’s written data, audio, or images, AI can be trained to identify patterns — and one particularly interesting application is using it to identify anomalies in medical images. This has already been tested in some fields of medical imagery with promising results.

However, AI can also be notoriously easy to fool, especially with real-life data. In the new study, researchers in the group of Professor Dmitry Dylov at Skoltech presented a new method through which AI can detect anomalies. The method, they say, is better than existing ones and can detect barely visible anomalies.

“Barely visible abnormalities in chest X-rays or metastases in lymph nodes on the scans of the pathology slides resemble normal images and are very difficult to detect. To address this problem, we introduce a new powerful method of image anomaly detection.”

The proposed approach essentially suggests a new baseline for anomaly detection in medical image analysis tasks. It’s good at detecting anomalies that represent medical abnormalities, as well as problems associated with medical equipment

“An anomaly is anything that does not belong to the dominant class of “normal” data,” Dylov told ZME Science. “If something unusual is present in the field of view of a medical device, the algorithm will spot it. Examples include both imaging artifacts (e.g., dirt on the microscope’s slide) and actual pathological abnormalities in certain areas of the images (e.g., cancerous cells which differ in shape and size from the normal cells). In the clinical setting, there is value in spotting both of these examples.”

The maximum observed improvement compared to conventional AI training was 10%, Dylov says, and excitingly, the method is already mature enough to be deployed into the real world.

“With our algorithm, medical practitioners can immediately sort out artifactual images from normal ones. They will also receive a recommendation that a certain image or a part of an image looks unlike the rest of the images in the dataset. This is especially valuable when big batches of data are to be reviewed manually by the experts,” Dylov explained in an email.

The main application of this approach is to ease the workload of experts analyzing medical images and help them focus on the most important images rather than manually going through the entire dataset. The more this type of approach is improved, the more AI can help doctors make the most of their time and improve the results of medical imaging analysis.

The study was published in the journal IEEE (Institute of Electrical and Electronics Engineers).

RelatedPosts

Neural network image processor tells you what’s going in your pictures
AI is designed to create motivational quotes. Things go hilariously awry
AI learns to play chess by studying game commentaries instead of practicing
Text AI can produce images — and it’s very good at it
Tags: artificial intelligencemedical imagerymedical intelligence

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

AI Designs Computer Chips We Can’t Understand — But They Work Really Well

byMihai Andrei
2 weeks ago
A gold winning strawberry
Mathematics

An AI Just Took Gold at the World’s Hardest Math Contest and It Wasn’t Even Trained For It

byMihai Andrei
4 weeks ago
Inventions

China’s New Mosquito Drone Could Probably Slip Through Windows and Spy Undetected

byMihai Andrei
2 months ago
Future

Your Brain Could Reveal a Deadly Heart Risk. AI Is Learning to Read the Signs

byMihai Andrei
2 months ago

Recent news

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

August 19, 2025

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

August 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.