ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

Tiny fern has the world’s largest genome. It contains 50 times more genetic information than humans

The New Caledonian fern's genome is 50 times larger than the human genome.

Tibi PuiubyTibi Puiu
July 12, 2024
in Environment, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
Tmesipteris oblanceolata.
Tmesipteris oblanceolata. Credit: Cheng-Wei Chen.

A small fern species, Tmesipteris oblanceolata, found in the South Pacific islands of New Caledonia, now holds the record for the largest known genome. New research reveals that the fern’s genome is over 50 times the size of the human genome and about 7 percent larger than that of the previous record holder, the Japanese flower Paris japonica.

A Giant Among Genomes

It seems extremely counterintuitive that such a small and simple plant could store such a mind-boggling amount of genetic information. However, plants are just odd when it comes to genetics. First of all, not all plants have large genomes. The smallest plant genomes can be 2,500 times smaller than the largest. Secondly, more complex plants don’t necessarily have bigger genomes. For example, the oak tree genome is surprisingly over 100 times smaller than the genome of the famous festive plant, mistletoe.

Generally, plants can have large genomes through a few key processes. One major contributor is polyploidy, where plants inherit multiple sets of chromosomes, as opposed to a single pair of homologous chromosomes, thereby increasing genome size. Another factor is the accumulation of repetitive DNA sequences. These sequences can include transposable elements, which are DNA segments that can move around within the genome, creating copies of themselves and expanding the genome. Additionally, the large genome size can be a result of whole-genome duplications, which have occurred multiple times in plant evolutionary history, leading to genome expansion and complexity​.

In general, plants seem to have larger genomes than animals. The largest animal genome belongs to the Australian lungfish, an endangered air-breathing species. It is a relative of the first “land fish” that evolved into the first terrestrial animals more than 380 million years ago. The Australian lungfish has 43 billion base pairs, which is 14 times more than the human genome, but still nearly three times less than the that of T. oblanceolata. The large genomes in plants may provide them with a greater genetic toolkit to adapt to diverse environments. This may be critical, since plants cannot move and must respond to environmental stresses on site.

T. oblanceolata's genome compared to other plants and animals.
T. oblanceolata‘s genome compared to other plants and animals. Credit: iScience.

The Mystery of Genome Size

Previous studies suggested that fork ferns (Tmesipteris) have unnaturally large genomes, which prompted the team led by Jaume Pellicer, an evolutionary biologist at the Botanical Institute of Barcelona, to investigate further. To this aim, the researchers sequenced the genomes of six fork fern species from New Caledonia. They isolated the nuclei from the ferns’ cells and stained their DNA with fluorescent dye to measure genome size.

Their efforts revealed that T. oblanceolata has a genome consisting of 160 billion nucleobases. This fern typically grows on larger forest plants and reaches only 15 centimeters in length.

The discovery of T. oblanceolata‘s enormous genome prompts intriguing questions about the biological limits of genome size. Maining such a huge genome is not without costs. Every time a cell divides, it needs to replicate its DNA. The larger the genome, the more energy the organism needs to spend. In the case of this fork fern, if you were to unpack its DNA, the plant would need to replicate nearly 100 meters (328 feet) of DNA during every cellular division.

RelatedPosts

This Benjamin Button-like Jellyfish Can Age in Reverse, From Adult to Juvenile
Researchers find early connection between Easter Island and America inhabitants
Genome duality: chromosome sets sequenced separately reveal magic ratio
Organism with six sexes picks gender like a game of roulette

This begs the question: why would T. oblanceolata evolve such a stupendously large genome? We don’t really know, but repeated genetic bottlenecks might have played a role. Plants that have gone through many cycles of near-extinction might have accumulated many deleterious mutations and “junk DNA” that might have been useful millions of years ago but today have no useful function.

A Milestone in Genome Evolution Science

Understanding how the gene copies in T. oblanceolata compare to those in smaller genomes, like some aquatic ferns, may help explain the evolution of genome size extremes. This is why cataloging the genomes of as many species as possible is important, particularly for less conspicuous species. The fork fern’s deceptively modest appearance hid a genetic marvel all this time. Who knows what scientists might discover next?

“Our discovery of the largest genome in T. oblanceolata represents a unique milestone in the field, identifying this species as a critical asset for future detailed genomic analysis so we can fully understand the ecological and evolutionary consequences of genome size diversity and architecture across eukaryotes, especially in the face of ongoing biodiversity loss and climate change,” the authors of the new study wrote.

The findings were reported in the journal iScience.

Tags: evolutionary biologygenomewhole genome sequencing

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
3 weeks ago
Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
3 months ago
Genetics

Scientists Close to Finding Leonardo da Vinci’s DNA Using a 21-Generation Family Tree

byTibi Puiu
3 months ago
Anthropology

Scientists Found a Neanderthal Population That Lived in Total Isolation for 50,000 Years

byTudor Tarita
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.