ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

‘Terminator’ rubber tires made from industrial waste can repair themselves on the go

The new rubber material is a 'latent adhesive' that doesn't become sticky unless you add a catalyst.

Tibi PuiubyTibi Puiu
May 19, 2020
in Environment, Green Living, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Pixabay.

Few things are as annoying as a flat tire with no spare in the trunk. Wouldn’t it be nice if you could just snap your fingers and have the flat tire magically fix itself? Researchers in Australia and the UK have thought long and hard to develop tires with a novel composition that enables them to be repaired on the go.

No magic though — just good old chemistry

The tire is made of 50% sulfur mixed with canola cooking oil and a chemical called dicyclopentadiene (DCPD). All three main ingredients are byproducts of industrial activity and are generally discarded. For instance, DCPD is a waste product from petroleum refining.

However, what’s appealing about this new rubber material isn’t necessarily its environmental friendliness. Instead, where it shines is in its ability to self-repair in the presence of a catalyst.

A diagram of the new rubber polymer. Credit: Flinders University.

When an amine catalyst is applied to a flat tire, a chemical reaction is triggered that completely repairs the damage and returns the tire to its original strength within minutes — even at room temperature. Take that, super glue!

Essentially, the new rubber material is a “latent adhesive” that is resistant to water and corrosion. Once the catalyst is applied, the polymers in the rubber join together.

“The rubber bonds to itself when the amine catalyst is applied to the surface. The adhesion is stronger than many commercial glues,” said Dr. Tom Hasell, University of Liverpool researcher and co-author of the new study.

If the tire is torn to shreds beyond repair or has reached the end of its life cycle, it can be easily recycled, according to Justin Chalker of Flinders University.

“This study reveals a new concept in the repair, adhesion and recycling of sustainable rubber,” Chalker, who is the team lead for the new study, said in a statement.

Most rubbers, as well as ceramics and plastics, are not recyclable. In Australia alone, 48 million tires are discarded but only 16% are recycled — the rest flood landfills or are illegally dumped across the country or, even worse, in the ocean.

RelatedPosts

German town recycles 70% of garbage
New catalyst nanoparticle turns plastic waste into high-quality hydrocarbons for oils, waxes, cosmetics
Lego, the World’s Largest (and Smallest) Tire Manufacturer, Makes a Major Eco-Friendly Upgrade
South Africa is repaving its roads with recycled plastic milk bottles

 “It is exciting to see how the underlying chemistry of these materials has such wide potential in recycling, next-generation adhesives, and additive manufacturing,” Chalker concluded.

The findings were reported in the journal Chemical Science.

Tags: recyclingtires

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

New Catalyst Recycles Plastics Without Sorting. It Even Works on Dirty Trash

byTibi Puiu
6 days ago
Future

This 3D printed circuit board that dissolves in water could finally solve our E-waste problem

byMihai Andrei
2 weeks ago
Environment

Lego, the World’s Largest (and Smallest) Tire Manufacturer, Makes a Major Eco-Friendly Upgrade

byRupendra Brahambhatt
6 months ago
Environment

Most Plastic Bottles Can Only Be Recycled Once. But Scientists Find A Way to Recycle Plastic Indefinitely

byTibi Puiu
1 year ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.