ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Renewable Energy

Artificial ‘blowhole’ wave energy could become the world’s cheapest energy source

Tidal and wave energy are considered even more reliable than solar and wind -- but getting them to work is tricky.

Tibi PuiubyTibi Puiu
October 11, 2022
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Wave Shell.

In their search for alternative sources of energy to dirty fossil fuels, scientists simply had to look outside their windows for inspiration. We are surrounded by energy, be it in the form of electromagnetic radiation (solar), chemical energy (hydrogen), or mechanical energy (wind). High up on the list is also the restless motion of the sea, whose constant ebbing and flowing can be harnessed to produce tidal power.

However, tidal barrages and turbines are very expensive, and aside from a few experimental projects in South Korea, France, Canada, and China, this form of renewable energy hasn’t really been proven to be feasible. But there’s hope yet that the ocean can become a source of plentiful, clean energy, a vision that is shared by an Australian company called Wave Swell Energy, which for the past year has been experimenting with a new wave-harvesting device that works a lot like an ‘artificial blowhole’.

Natural blowholes are produced when sea caves grow towards the land and upwards creating a vertical shaft that is exposed to the surface. Water often gushes out at the top part of the landform when waves move to the sea cave with significant force. 

The artificial blowhole structure, which is made of a large concrete base, produces electricity from a turbine turned by air pressure in a tube caused by the rising and falling water. All the turbine’s moving parts are above the water, which turns only when the water level drops.

Credit: Wave Shell.

The proof-of-concept is a small 200-kW installation unit near the Tasmanian coastal town of Grassy. It has been funneling electricity into the island’s micro-grid since June last year, and the results so far have been very promising.

According to a new CSIRO report, the “UniWave 200” wave energy machine captured around 50% of the energy from the waves as they passed under the unit. For comparison, wind turbines are around 50% efficient and solar panels generally have a 15% to 20% rated efficiency.

The researchers also modeled the lifetime costs of adding 1MW-sized blowhole plants at Cape Nelson and Warrnambool, both in western Victoria, and Carpenter Rocks in South Australia, finding that the wave energy halved the cost of an integrated system with solar, offshore wind, and batteries.

RelatedPosts

Scientists combine spider silk with graphene, create incredibly powerful web
Superconducting highway transports vehicles and energy in one go
NASA successfully tests 3D printed rocket engine injector
Researchers develop scaffold implant that mimics the spinal cord

Previously, another CSIRO report commissioned by Wave Swell found that the levelized cost of electricity of $0.032 per kWh by 2030, which puts it on par with the cheapest onshore wind and solar. That’s as long as the technology is scaled en mass to around 2,500 MW of installed capacity. That sounds like a lot, but the authors of the report mention that that’s only a third of 1% of the capacity that solar and onshore wind had to cover before they could become this cheap.

Credit: Wave Shell.

The main value proposition of the artificial blowhole lies in its reliability. Unlike solar and wind energy, the motion of waves is relatively constant and predictable, helping offset the grid’s demand when it’s cloudy outside and the wind is weak. This means an industrial-scale renewable energy system needs much fewer batteries, which can be prohibitively expensive.

While Wave Swell’s demonstration unit was built in Tasmania, the company is now eyeing markets in Europe and the US where there is more support for technological advancements in wave and tidal power. Low-lying island nations like the Maldives could be the most promising locations where blowhole energy converters could be installed.

These countries are the most vulnerable to climate change, threatened by rising sea levels, coastal erosion, and extreme weather events. To protect themselves, huge sea walls like the one currently deployed around the coast of the Netherlands would have to be raised, where blowhole generators could be ideally placed.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Geology

This beautiful rock holds evidence of tsunamis from 115 million years ago

byMihai Andrei
3 hours ago
Mind & Brain

New Version of LSD Boosts Brain Plasticity Without the Psychedelic Trip

byTibi Puiu
4 hours ago
Future

The World’s First Mass-Produced Flying Car Is Here and It Costs $1 Million

byTibi Puiu
5 hours ago
Mind & Brain

Working overtime may be reshaping your brain

byMihai Andrei
6 hours ago

Recent news

This beautiful rock holds evidence of tsunamis from 115 million years ago

May 20, 2025

New Version of LSD Boosts Brain Plasticity Without the Psychedelic Trip

May 20, 2025

The World’s First Mass-Produced Flying Car Is Here and It Costs $1 Million

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.