Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Environment Environmental Issues

Trees could be used for high tech energy storage devices

Tibi Puiu by Tibi Puiu
April 9, 2014
in Environmental Issues, Green Living
Reading Time: 2 mins read
A A
Share on FacebookShare on TwitterSubmit to Reddit

When you think of timber technology, the first things that come to mind may be constructing homes, wooden tools and, of course, paper. Oregon State University researchers have found, however, that trees could be employed in a process that produces building blocks for supercapacitors – high tech energy storage devices that are considered paramount for the future’s energy needs and applications.

Cellulose to carbon electrode
Photo: Oregon State University

Scientists found that cellulose , which is the most abundant polymer on Earth found in high concentration in trees, can be heated in a furnace in an anaerobic environment (no oxygen – this process is called pyrolysis) with ammonia present, to produce nitrogen-doped, nanoporous carbon membranes – the electrodes of a supercapacitor. The method is quick, low cost and environmentally benign. The only byproduct is methane, which can be then used as a fuel, either in a fuel cell for less carbon emission, or directly burned alone in a heat engine.

What’s truly remarkable is the simplicity of the thermochemical process. The team involved was really stoked to find that nobody else had reported this fundamental chemical reaction. Wood is extremely cheap and readily available, but few could think of any way to make it into a high tech material.

ADVERTISEMENT

Supercapacitors are extremely important for filling the world’s energy demands of the future. Like a battery, supercapacitors can store vasts amount of energy, only they can charge and discharge incredibly fast, making them particularly useful  in computers and consumer electronics, such as the flash in a digital camera. Where they truly can fill their potential is in heavy industry applications. A wind farm produces enormous quantities of energy, but this supply tends to be intermittent and unreliable. Using huge supercapacitors, megawatt or gigawatt sized wind turbines could be stabilized and ensure base-load.

Sorry to interrupt, but you should really...

...Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

We could go on forever about the potential applications of supercapacitors, but what brings them down is cost. The Oregon State University researchers demonstrated how to build a key component for supercapacitors easily, cheaply and fast. If supercapacitor cost can be brought down considerably, as a result of findings such as the high tech tree solution, then society might reap great benefits.

The findings were reported in the journal Nano Letters.

ADVERTISEMENT

Tags: capacitorcelluloseenergysupercapacitortree
ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.