ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

Conservation efforts can really help forests regrow naturally

Overall though, deforestation rates remain high throughout the world.

Fermin KoopbyFermin Koop
May 11, 2021
in Environment, Environmental Issues
A A
Share on FacebookShare on TwitterSubmit to Reddit

With millions of hectares of forest disappearing every year, conservationists are putting a larger emphasis on forest regeneration – an approach through which natural forests are allowed or encouraged to recover under their own steam.

The efforts seem to be paying off. Almost 59 million hectares of forests have already grown back worldwide since 2000, according to a new study — an area larger than the surface of Spain. The regrown forest area is estimated to store almost 5.9 billion tons of carbon dioxide (CO2), which is good news amid the global climate crisis.

Image credit: Flickr / Walkers

The study is part of a two-year research project from a team lead by WWF researchers which analyzed more than 30 years of satellite imaging data and survey local experts at more than 100 forest regeneration sites in 29 countries. The results can be seen in an interactive map created by the researchers.

“It would take decades or even centuries for a regenerated ‘secondary forest’ to become as rich in carbon and wildlife as an existing, old-growth forest, and some ecosystems can never recover from deforestation. Nevertheless, restoring and expanding forests are central parts of the global challenge to absorb carbon, stabilize the climate and restore wildlife,” the researchers wrote.

Forest regeneration means letting nature take the lead and allowing the forest heal naturally, instead of mass plantations. Some areas need nothing more than to be left alone to begin regenerating, while others need active encouragement to grow back, depending on the condition of the soil and the local land use. It’s a different approach to forest restoration or reforestation, which have been questioned.

One of the simplest ways to remove carbon dioxide from the air is to plant trees. But scientists say the right trees must be planted in the right place if they are to be effective at reducing carbon emissions. That’s why the researchers are instead encouraging regeneration, which can secure even more carbon storage and biodiversity.

“We’ve known for a long time that natural forest regeneration is often cheaper, richer in carbon, and better for biodiversity than actively planted forests,” William Baldwin-Cantello, director of nature-based solutions at WWF, said in a statement. “This research tells us where and why regeneration is happening, and how we can recreate those conditions elsewhere.”

Regeneration efforts

A quick look at the regeneration map shows that, while deforestation hotspots are concentrated in the tropics, most regeneration has taken place in the northern hemisphere. As countries grow richer, they move towards manufacturing and service industries, freeing up land for regeneration, the researchers explained.

Image credits: WWF.

But not all is well. A closer look shows that some of the regeneration hotpots also sit alongside areas known for the high deforestation rates in Southeast Asia, sub-Saharan Africa, and Brazil. This isn’t necessarily surprising, as some of the land cleared for timber or agriculture is usually abandoned shortly after – allowing areas to regenerate naturally. Examples of this include the Atlantic Forest, along the coast of South America, a forest area that once occupied more than a million squared kilometers but now only 15% remains. The mapping study showed an estimated 4.2 million hectares have regenerated in Brazil since 2000, much of it focused around the Atlantic Forest biome.

RelatedPosts

New Guinea is the island with the greatest plant diversity in the world
The March award for awesome animal goes to THE MIMIC OCTOPUS
Beijing pollution seen from outer space – before and after pics
Finally, some good news from the Amazon: Brazil and Colombia reduce deforestation

At the same time, in Mongolia’s boreal forests, conservation efforts have helped to regenerate 1.2 million hectares of forest, the study showed. There has been an increased emphasis from the Mongolian government on protected areas, preventing fires and illegal activities such as logging and mining, in line with natural regeneration.

Despite these encouraging signs, the researchers warned that deforestation levels are still very high around the world. The rate at which the world’s forests are being destroyed increased sharply last year, with at least 42,000 sq km of tree cover lost in key tropical regions, a study by Global Forest Watch showed earlier this year.

Two-thirds of global forest cover loss is occurring in the tropic and subtropic regions of the world, where vast clusters of deforestation hot spots are destroying the important ecosystem services forests provide. There are 24 of these hot spots that are spread across Latin America, sub-Saharan Africa, Southeast Asia, and Oceania, the WWF showed.

Tags: deforestationenvironment

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
22 hours ago
Environment

9 Environmental Stories That Don’t Get as Much Coverage as They Should

byMihai Andrei
3 months ago
A man showcasing a paper bag made of dead leaves.
Chemistry

This startup is using dead leaves to make paper without cutting trees

byRupendra Brahambhatt
1 year ago
News

City trees save lives. But there’s an important “tree inequality”

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.