ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Scientists sequence the genomes of six bat species for clues to their unique features

Among other things, these genomes may help find new approaches against COVID-19.

Tibi PuiubyTibi Puiu
July 22, 2020
in Animals, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Myotis myotis (Greater mouse-eared bat), Credit: Olivier Farcy.

Bats are the only flying mammals in the animal kingdom — but that’s not all they’re known for. Bats have a number of quite extreme adaptations, such as echolocation, highly sensitive sensory perception, significant longevity for their size, resistance to cancer, and exceptional immunity to viral infections. In fact, the coronavirus that has caused the world to grind to a halt is believed to have evolved inside bats, before jumping into humans.

No doubt, bats are amazing creatures. Now, for the first time, researchers have sequenced the raw genetic material that contains the instructions for bats’ unique, superpower-like adaptations.

“Given these exquisite bat genomes, we can now better understand how bats tolerate viruses, slow down aging, and have evolved flight and echolocation. These genomes are the tools needed to identify the genetic solutions evolved in bats that ultimately could be harnessed to alleviate human aging and disease,” Emma Teeling, senior author of the new study and a researcher at the University College Dublin, said in a statement.

Teeling and colleagues affiliated with Bat1k, a global consortium of researchers on a mission to sequence the genomes of every one of the 14,210 living bat species, published a study today in which they describe the genomes of six bat species.

The genomes were highly accurately analyzed with state-of-the-art sequencing technology and are about 10 times more complete than any other bat genome published in the past.

“Using the latest DNA sequencing technologies and new computing methods for such data, we have 96-99% of each bat genome in chromosome level reconstructions – an unprecedented quality akin to for example the current human genome reference which is the result of over a decade of intensive “finishing” efforts. As such, these bat genomes provide a superb foundation for experimentation and evolutionary studies of bats’ fascinating abilities and physiological properties” Eugene Myers, senior author of the study and Director of Max Planck Institute of Molecular Cell Biology and Genetics, and the Center for Systems Biology, said in a statement.

The first six bat genomes that were sequenced part of the Bat1K global genome consortium belonged to the greater horseshoe bat (Rhinolophus ferrumequinum), the Egyptian fruit bat (Rousettus aegyptiacus), the pale spear-nosed bat (Phyllostomus discolor), the greater mouse-eared bat (Myotis myotis), the Kuhl’s pipistrelle (Pipistrellus kuhlii) and the velvety free-tailed bat (Molossus molossus). 

Their genetic blueprints were compared to 42 other mammals, which enabled the researchers to pinpoint the position of bats on the mammalian tree of life.

Rhinolophus ferrumequinum (Greater horseshoe bat), Credit: Daniel Whitby.

Due to their many unique quirks, the question of where bats fit in on the tree of life has always been unresolved. But using novel phylogenetic methods and molecular datasets, the evidence suggests that bats are most closely related to Ferreuungulata — a group of mammals that includes carnivores like dogs, cats, and seals, as well as pangolins, whales, and hoofed mammals. Not a very narrow definition seeing how bats and cows are on the same roster, but as more bat genomes are sequenced their taxonomy can be refined further.

RelatedPosts

Ancient retrovirus may make some people more prone to addiction
Young bats learn different dialects from their nest mates
Researchers find early connection between Easter Island and America inhabitants
Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

The side-to-side comparison of different mammalian genomes also helped tease apart adaptations that are unique to bats through the loss and gain of certain genes.

For instance, the genes that enable bats’ famous echolocation were selected for in the ancestral branch of bats, suggesting this is an ancient trait in this group of mammals.

There was also evidence of gene loss and gain involved in immunity, particularly the expression of antiviral APOBEC3 genes. This may explain why bats have exceptional immunity that makes them extremely tolerant to viral infections.

In this day and age, understanding the molecular mechanisms that allow bats to withstand coronaviruses may lead to new approaches, therapies, and vaccines meant to increase human survivability in the face of COVID-19.

“Having such complete genomes allowed us to identify regulatory regions that control gene expression that are unique to bats. Importantly we were able to validate unique bat microRNAs in the lab to show their consequences for gene regulation. In the future we can use these genomes to understand how regulatory regions and epigenomics contributed to the extraordinary adaptations we see in bats.” Sonja Vernes, Co-Founding Director Bat 1K, Max Planck Institute for Psycholinguistics, Nijmegen, Senior Author

Although the researchers sequenced the genomes of only six bats, they’ve already learned quite a lot. However, this is merely the beginning — there are still more than 1,400 known bat species to go.

The findings appeared in the journal Nature.

Tags: batsgenome

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
4 weeks ago
Anthropology

Scientists Found a Neanderthal Population That Lived in Total Isolation for 50,000 Years

byTudor Tarita
3 months ago
Archaeology

The People of Carthage Weren’t Who We Thought They Were

byTibi Puiu
4 months ago
Animals

Not Just an Urban Legend: Alligators and Other Animals Are Living in (Some) Sewers

byMihai Andrei
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.