Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Future

Marine sponges may inspire stronger, lighter skyscrapers and bridges

Designs that mimic the glassy sponge’s skeletal structure are 20% stronger than traditional structures employed today in engineering.

Tibi Puiu by Tibi Puiu
September 22, 2020
in Future, News, Tech

Marine sponges like the Venus’ flower basket (Euplectella aspergillum) look like an otherworldly creature one would expect to find on an alien planet. These glassy sponges look like vases or sculptures, but don’t let their fragile appearance fool you — their skeleton is structurally strong. In fact, the structure is so strong that engineers are now mimicking it for the next generation of stronger and taller buildings, longer bridges, and lighter spacecraft.

In their new study, which was published today in the journal Nature Materials, researchers at Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS) analyzed the skeletal structure of Venus’ flower basket.

Similar to today’s tall skyscrapers or bridges, the sponge’s skeleton is arranged in a diagonally-reinforced square lattice-like structure. However, the lattice has an even higher strength-to-weight ratio than traditional lattice designs employed for centuries in architecture and engineering.

“We found that the sponge’s diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material, which means that we can build stronger and more resilient structures by intelligently rearranging existing material within the structure,” said Matheus Fernandes, a graduate student at SEAS and first author of the paper.

“In many fields, such as aerospace engineering, the strength-to-weight ratio of a structure is critically important,” said James Weaver, a Senior Scientist at SEAS and one of the corresponding authors of the paper. “This biologically-inspired geometry could provide a roadmap for designing lighter, stronger structures for a wide range of applications.”

Diagonal lattice designs that employ closely spaced diagonal beams enable loads to be more evenly distributed. Since the 1800s, this architecture hasn’t changed very much.

“It gets the job done, but it’s not optimal, leading to wasted or redundant material and a cap on how tall we can build. One of the main questions driving this research was, can we make these structures more efficient from a material allocation perspective, ultimately using less material to achieve the same strength?” said Fernandes.

Venus’ flower basket has a tubular body that is supported by two sets of parallel diagonal skeletal struts. These intersect with each other and are fused to an underlying square grid, forming a checkerboard-like pattern.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

Composite rendering that transitions from a glassy sponge skeleton on the left to a welded rebar-based lattice on the right, highlighting the biologically inspired nature of the research. Credit: Image Courtesy of Peter Allen, Ryan Allen, and James C. Weaver/Harvard SEAS  

Mathematical modeling, as well as experiments, showed that replicated designs inspired by the sponge’s skeleton outperformed existing lattice geometries widely employed in the field of engineering. Overall, the structural strength increased by more than 20% — all without the need for additional materials to achieve the same effect.

“Our research demonstrates that lessons learned from the study of sponge skeletal systems can be exploited to build structures that are geometrically optimized to delay buckling, with huge implications for improved material use in modern infrastructural applications,” said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS and a corresponding author of the study.

Tags: marine sponge
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.