Massive simulation of the HIV ‘shell’ reveals new vulnerabilities that we might exploit to eliminate the virus

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid.

Self assembling nano material brings us tangibly close to water-powered cars

Indiana University scientists have built a highly efficient bio-material that can serve as a catalyst for hydrogen production. This material takes us halfway towards the long sought-after “holy grail” of splitting water to make hydrogen and oxygen for fueling cheap and efficient cars that run on water.

Largest supercomputer bio-simulation ever reveals key HIV protective shell structure

One big obstacle scientists face in their efforts to develop effective drugs against HIV is the virus’¬†capsid –¬†an outer cell membrane-derived envelope and an inner viral protein shell that protects HIV essential proteins and genetic information. Current drugs have a hard time breaching this structure, however this might change. Using a supercomputer that crunched immense amounts of data, scientists have