ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Scientists find water clouds and exotic, primitive atmosphere on a “warm Neptune”

We didn't even know this kind of planet can exist.

Dragos MitricabyDragos Mitrica
May 12, 2017 - Updated on September 5, 2017
in Astronomy, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

It’s a type of planet which we didn’t even know existed — a Neptune-sized planet closer to a star than its namesake.

Artistic representation of the newly discovered “warm Neptune.” Image credits: NASA/GSFC.

A pioneering new study has revealed what astronomers believed to be evidence of water vapor and exotic clouds around a planet located some 437 light-years away from Earth. The planet, called HAT-P-26b, is a so-called warm Neptune — a Neptune-sized gas giant orbiting very close to its sun, which makes it much hotter. The new study also showed that the planet has an atmosphere composed almost entirely of hydrogen and helium, something which was even more unexpected.

“This exciting new discovery shows that there is a lot more diversity in the atmospheres of these exoplanets than we have previously thought,” David Sing, an astrophysics professor at the University of Exeter in England, said in a statement.

The chemical composition indicates a primitive atmosphere. Researchers believe that, compared to the gas giants in our own solar neighborhood, this planet either developed later in the history of its solar system, closer to its star — or both. It’s a quirk, but it’s a quirk which can be very useful. It kind of breaks the pattern we’ve been seeing in other, similar planets, and this allows astronomers to look at such planets in a new light and better understand the formation and evolution of different solar systems.

“Astronomers have just begun to investigate the atmospheres of these distant Neptune-mass planets, and almost right away, we found an example that goes against the trend in our Solar System,” says one of the researchers, Hannah Wakeford from NASA’s Goddard Space Flight Centre. “This kind of unexpected result is why I really love exploring the atmospheres of alien planets.”

The study itself didn’t employ any new technique. Basically, when the planet passes between its star and the Earth, a fraction of the light emitted by its star is captured and filtered by its atmosphere — but only for some wavelengths. By analyzing the wavelengths of the light which manages to reach us, we can infer the composition of the atmosphere. However, the study was innovative in the sense that it applied the technique to a much smaller planet than previous efforts. This was facilitated by the unusual orbit of the planet — the fact that it’s so close to its star. HAT-P-26b completes a full rotation around in star in just 4.23 days, which makes such observations much easier.

“This ‘warm Neptune’ is a much smaller planet than those we have been able to characterize in depth, so this new discovery about its atmosphere feels like a big breakthrough in our pursuit to learn more about how solar systems are formed, and how it compares to our own,” added Sing, the co-leader of a new study about HAT-P-26b that was published online today (May 11) in the journal Science.

So how would the sky of this alien planet look like? If you were looking through the water clouds, you’d likely see a washed-out, gray sky. While there is some water vapor, the clouds are much more exotic, likely made of disodium sulfide. These clouds would cause scattering in all colors, which is why you’d likely end up with a grayscale sky.

In recent years, telescope and telescope arrays such as NASA’s Kepler have revealed several intriguing planets, greatly expanding our understanding of alien worlds and their solar systems. The variety we are seeing is staggering and sometimes unexpected, but studies like this go a long way towards helping astronomers understand this variety.

Journal Reference: H.R. Wakeford el al., “HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance,” Science (2017).

RelatedPosts

The different types of planets barreling through space
New most distant body in the Solar system identified
“π Earth”: Astronomers discover Earth-sized planet that takes 3.14 days to orbit its star
Mars is also a wobbly planet like Earth, and we don’t know why
Tags: hot jupiterplanetwarm neptune

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

News

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

byJordan Strickler
2 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
3 months ago
News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
4 months ago
Astronomy

If water worlds exist, what do they really look like?

byMihai Andrei
1 year ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.