ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Venus is a no-lifer — and probably always was

Ancient aliens may have not found Venus that appealing.

Mihai AndreibyMihai Andrei
October 18, 2021
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new study modeled the conditions on the early days of Venus and found little that would be suitable to life as we know it.

Image credits: Venus.

Venus is as hellish a planet as you can imagine, but it wasn’t always considered that way. In fact, our understanding of Venus (at least concerning its potential for hosting life) has been pretty topsy-turvy. For most of our astronomical history, Venus was thought to be capable of hosting life. Ancient cultures ascribed the planet mythological value, linking it to the likes of Lucifer or the Greek goddess Aphrodite. In the 17th century, Galileo Galilei observed the planet and found that it had phases like the Moon, and in the 18th century, the atmosphere of Venus was discovered by Russian polymath Mikhail Lomonosov.

From that point on, Venus was considered a sort of ‘twin’ to Earth — which seems to make sense. After all, it’s a rocky planet, comparable in size to Earth, it has an atmosphere, so it should have life-harboring potential too, right? Well, not really.

In the 1960s, more detailed observations showed that Venus is a hellish place, the hottest planet in the solar system. Oh, and its atmosphere? It’s mostly carbon dioxide (which causes an extreme greenhouse effect), with clouds composed of sulfuric acid. So all in all, Venus is still a hellish landscape, with its environment better suited for killing than for hosting life.

But in recent years, model studies have suggested that Venus may have not always been this inhospitable, and in its early days, may have even hosted oceans of liquid water. But was this really the case?

Hot and cold and hot again

When all planets form, they’re initially very hot, but previous models suggested that Venus may have cooled down enough to host liquid water, with the planet’s clouds bouncing the sun’s radiation back into space.

But this study comes with a different conclusion: according to a new model that simulated the Venusian atmosphere in these early days, Venus could have never hosted liquid water.

RelatedPosts

Rocket Lab and MIT are poised to send the first private mission to Venus, to search for signs of life
Earth-like Lightning On Venus, European Space Probe Confirms
Conditions on early-Venus might have allowed for an ocean of liquid water
Venus may still be volcanically active

“We simulated the climate of the Earth and Venus at the very beginning of their evolution, more than four billion years ago, when the surface of the planets was still molten”, explains Martin Turbet, one of the study authors. “The associated high temperatures meant that any water would have been present in the form of steam, as in a gigantic pressure cooker.” 

The main difference from previous model findings is that the temperature never got low enough for water vapor to form raindrops and accumulate on the surface. The cause boils back to the clouds: this new model also suggests that clouds formed, but they predominantly formed on the night side of the planet, creating a powerful greenhouse event that prevented Venus from cooling as quickly as previously thought, Turbet explains.

According to the same model, the Earth was very close to suffering the same fate and turning into a permanent hothouse planet. The key that allowed water to accumulate on our planet is the so-called “faint Sun” — in the early days of the solar system, the sun was just 70% as luminous as it is now. Had it been a bit more luminous (just 92% of what it is today), our planet could have turned into a hothouse Venus-type planet.

The study could also help solve the so-called “Faint young sun paradox”. Basically, the argument was that because the sun was fainter than it is today, our planet should have turned to ice. Instead, judging by the findings in this study (and the greenhouse effect caused by the clouds on Earth), the faint sun turned out to be a boon, helping keep the temperature balance in a range that was favorable to liquid water.

“It turns out that for the young, very hot Earth, this weak Sun may have in fact been an unhoped-for opportunity”, says Emeline Bolmont, professor at UNIGE, member of PlaneS and co-author of the study.

Of course, whether or not the model incorporates all the relevant data or some elements still escape it remains to be confirmed. However, this doesn’t bode too well for Venus’ chances of habitability — present or past.

“If the authors are correct, Venus was always a hellhole,” astronomers James Kasting and Chester Harman, of Penn State University and NASA’s Ames Research Center, respectively, wrote in an accompanying “News & Views” piece in the same issue of Nature.

The study was published in Nature.

Tags: greenhouse gas effectvenus

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Venus
News

Not a twin planet: Venus was never habitable, says new study

byJordan Strickler
9 months ago
News

What happened to all of Venus’s water? New study is close to solving mystery

byJordan Strickler
1 year ago
Volcanoes

Volcanoes on other planets — Venus’ Maat Mons, Earth’s Karymsky, Mars’ Olympus Mons, Io, and Enceladus

byMihai Andrei
2 years ago
News

Rocket Lab and MIT are poised to send the first private mission to Venus, to search for signs of life

byAlexandru Micu
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.