ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Titan is moving away from Saturn 100 times faster than expected

New findings from NASA’s Cassini space probe challenge our understanding of tidal forces.

Florian LienertbyFlorian Lienert
June 11, 2020
in Astronomy, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Saturn’s moon Titan, an icy world shrouded by a hazy atmosphere, is the second-largest moon in our solar system, nearly 50% larger than the Earth’s moon.

In a new study published in Nature Astronomy, a team of researchers report that Titan may be straying from its planet at a much faster rate than anticipated.

Titan passing in front of Saturn — slowly drifting apart, bit by bit. Image credits: NASA / JPL.

Every moon slowly drifts away from its planet due to tidal forces. The orbiting moon exerts a gravitational pull on the planet as it orbits, creating a temporary bulge as it passes over — this is also the reason why we have high tides and low tides on Earth, for instance.

The planet’s spin sweeps the bulge forward ever so slightly, which in turn pulls on the moon and transfers it into a higher orbit. That way, the moon moves away from the planet ever so slightly each year.

So long, old friend

Previously, scientists had estimated the rate Titan moves away from Saturn to be around 0.1 cm per year. But according to recent data gathered by NASA’s Cassini spacecraft, Titan actually drifts away 100 times faster than expected, at a rate of approximately 11 centimeters each year.

These findings, while contradicting previous predictions, agree with a hypothesis proposed in 2016 by Jim Fuller, Jing Luan, and Eliot Quataert. The researchers proposed a mechanism also observed in binary stars called resonance locking, which could explain the fast migration seen in Saturn’s moon Titan. This is a process where the gravitational force of the moon squeezes the planet and forces it to oscillate. In this case, the orbital motion of Titan lines up with internal motions inside Saturn increasing the efficiency of the tidal forces and leading to a faster migration rate.

This finding also bears significant implications for the formation of Saturn’s rings and moon system (which hosts over 80 moons).

RelatedPosts

Frog harem: lucky males stay loyal
Plastic recycling is still a myth in the US, even as plastic waste increases
You have this weird-looking 423-million-year-old armored fish to thank for jaws
QR-type barcodes are about to revolutionize retail

If the speed at which Titan is straying from Saturn is so large now, it implies that it was also larger in the past. This means that Titan, previously thought to have formed at a similar distance from its planet as where it is now, may have formed much closer to Saturn and then migrated outwards. This changes our understanding not only of how Saturn’s rings and moons formed but also interactions in binary star systems, galaxies, and exoplanets in close orbit to their stars.

Now, scientists await more data from the Juno space probe orbiting Jupiter which could validate the theory of resonance locking further.

ShareTweetShare
Florian Lienert

Florian Lienert

Florian Lienert is a passionate scientific journalist and science volunteer with a focus on astronomy and cosmology.

Related Posts

Health

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

byTibi Puiu
2 days ago
Anthropology

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

byTudor Tarita
2 days ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
2 days ago
News

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

byTudor Tarita
2 days ago

Recent news

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

July 4, 2025

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

July 4, 2025

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

July 4, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.