ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

After 34 years in space, Voyager has finally left the solar system

Mihai AndreibyMihai Andrei
March 20, 2013 - Updated on September 10, 2017
in Astronomy, Astrophysics, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Geochemical analysis show Earth never really melted
The sounds of Earth – listen to the Golden Records we sent in space on the 1977 Voyager mission
Voyager-1 discovers new solar system boundary as it heads for interstellar space
Turns out, another solar system has more planets than ours

To boldly go where no man has gone before: a spacecraft launched from Earth, Voyager I has pushed into the great unknown, leaving behind our solar system.

For years, astronomers have been discussing about when Voyager will finally leave the solar system – and it’s actually pretty hard to draw a line and say that this is where our solar system ends.

voyager

You can track Voyager’s distance to the Sun and the Earth using this resource. If you’re wondering why the distance to Earth is decreasing, it’s because right now, the Earth is orbiting in its direction, and its doing so faster than the shuttle is moving.

Wednesday morning, the official word came down: interstellar space travel has been reached. The announcement came through a press release from the American Geophysical Union:

Thirty-five years after its launch, Voyager 1 appears to have travelled beyond the influence of the Sun and exited the heliosphere, according to a new study appearing online today.

The heliosphere is a region of space dominated by the Sun and its wind of energetic particles, and which is thought to be enclosed, bubble-like, in the surrounding interstellar medium of gas and dust that pervades the Milky Way galaxy.

On August 25, 2012, NASA’s Voyager 1 spacecraft measured drastic changes in radiation levels, more than 11 billion miles from the Sun. Anomalous cosmic rays, which are cosmic rays trapped in the outer heliosphere, all but vanished, dropping to less than 1 percent of previous amounts. At the same time, galactic cosmic rays – cosmic radiation from outside of the solar system – spiked to levels not seen since Voyager’s launch, with intensities as much as twice previous levels.

The findings have been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

“Within just a few days, the heliospheric intensity of trapped radiation decreased, and the cosmic ray intensity went up as you would expect if it exited the heliosphere,” said Bill Webber, professor emeritus of astronomy at New Mexico State University in Las Cruces. He calls this transition boundary the “heliocliff.”

In the GRL article, the authors state: “It appears that [Voyager 1] has exited the main solar modulation region, revealing [hydrogen] and [helium] spectra characteristic of those to be expected in the local interstellar medium.”

However, Webber notes, scientists are continuing to debate whether Voyager 1 has reached interstellar space or entered a separate, undefined region beyond the solar system.

“It’s outside the normal heliosphere, I would say that,” Webber said. “We’re in a new region. And everything we’re measuring is different and exciting.”

The work was funded by NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

Tags: solar systemvoyagerVoyager-1

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
1 week ago
News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
2 months ago
Science

Ancient Water, Alien Salts, and Life’s Building Blocks Were All Found in Bennu Asteroid

byTimothy McCoy
6 months ago
Astronomy

Stunning close-up views of scorching hot Mercury may surprisingly reveal ice in its craters

byMihai Andrei
6 months ago

Recent news

Researchers tore down a Tesla and BYD battery to see which one’s better

July 25, 2025

Ancient DNA Reveals the Surprising Origins of Attila’s Huns. Genetics Point to an Ancient Mongolian Empire

July 25, 2025

These Dolphins Use Sea Sponges on Their Faces to Hunt and It’s More Complicated Than Anyone Thought

July 25, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.