ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Astronomers find one of the oldest stars in the Universe

The other star we've found so far has so little iron -- a key indicator that it was forged close to the dawn of the universe.

Tibi PuiubyTibi Puiu
August 5, 2019 - Updated on July 26, 2023
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Only 35,000 light-years away from Earth, astronomers have spotted a red giant star that was forged just a couple hundred million years after the big bang.

Artist impression of the formation of the very first stars. Credit: WISE, ABEL, KAEHLER.
Artist impression of the formation of the very first stars. Credit: WISE, ABEL, KAEHLER.

The recent discovery was made by astronomers led by Dr. Thomas Nordlander of the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), who found a record-low amount of iron in a star located at the edge of the Milky Way’s halo. The red giant, unceremoniously called SMSS J160540.18–144323.1, has an iron content of just one part per 50 billion or 1.5 million times less than the sun.

“That’s like one drop of water in an Olympic swimming pool,” Dr. Nordlander said in a statement.

Why is this star so significant? After the early universe started to cool off, the only available elements were hydrogen, helium, and trace amounts of lithium. The earliest stars — let’s call them 1st generation — fused these light-weight elements inside their very massive and very hot cores. However, these stellar pioneers were very short-lived, quickly running out of fuel before going out with a bang, turning supernova. The massive explosion that signals the end of a star spews its forged elements across the universe, where they can be incorporated by new stars. Over the course of generations, increasingly heavy elements can be forged such as silicon or iron.

None of the first stars have survived, so a lot of what we suppose about them cannot be verified. However, there’s still a lot to learn from their surviving cosmic relatives. If a star has a lot of iron, scientists can infer that this star must have formed after a predictable number of stellar generations. For instance, based on its metal content, astronomers believe that the sun is about 100,000 generations away from the big bang.

“The good news is that we can study the first stars through their children – the stars that came after them like the one we’ve discovered,” said study co-author Professor Martin Asplund, a chief investigator of ASTRO 3D at the Australian National University.

Considering the record-low amount of iron found in SMSS J160540.18–144323.1, astronomers believe that it was formed after one of the first stars exploded, just a couple hundred million years after the big bang. Dr. Norlander and colleagues believe that the exploding star that seeded SMSS J160540.18–144323.1’s iron was only ten times more massive than the sun. It must have also exploded rather feebly so most of its iron and other heavy elements were pulled back into the core by the gravity of the remnant neutron star.

It’s remarkable to learn that our galactic backyard still houses stars from the earliest generations — although they might not last for long. The newly found star is a red giant, which means its at the very end of its life cycle before exploding in a supernova. In the future, astronomers hope to find more such second-generation stars that might tell us more about what the early universe looked like.

The study was published in the Monthly Notices of the Royal Astronomical Society.

RelatedPosts

Supernovae could have helped create life on Earth
Astronomers capture light from first stars using bright galaxies
Beautifully colored ‘seagull nebula’ imaged
Researchers spot the first coronal mass ejection outside our solar system — it was massive
Tags: starsupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
1 week ago
News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
4 weeks ago
News

Early cosmic explosions may have filled the young universe with water

byJordan Strickler
5 months ago
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
6 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.