ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Astronomers find one of the oldest stars in the Universe

The other star we've found so far has so little iron -- a key indicator that it was forged close to the dawn of the universe.

Tibi PuiubyTibi Puiu
August 5, 2019 - Updated on July 26, 2023
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Only 35,000 light-years away from Earth, astronomers have spotted a red giant star that was forged just a couple hundred million years after the big bang.

Artist impression of the formation of the very first stars. Credit: WISE, ABEL, KAEHLER.
Artist impression of the formation of the very first stars. Credit: WISE, ABEL, KAEHLER.

The recent discovery was made by astronomers led by Dr. Thomas Nordlander of the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), who found a record-low amount of iron in a star located at the edge of the Milky Way’s halo. The red giant, unceremoniously called SMSS J160540.18–144323.1, has an iron content of just one part per 50 billion or 1.5 million times less than the sun.

“That’s like one drop of water in an Olympic swimming pool,” Dr. Nordlander said in a statement.

Why is this star so significant? After the early universe started to cool off, the only available elements were hydrogen, helium, and trace amounts of lithium. The earliest stars — let’s call them 1st generation — fused these light-weight elements inside their very massive and very hot cores. However, these stellar pioneers were very short-lived, quickly running out of fuel before going out with a bang, turning supernova. The massive explosion that signals the end of a star spews its forged elements across the universe, where they can be incorporated by new stars. Over the course of generations, increasingly heavy elements can be forged such as silicon or iron.

None of the first stars have survived, so a lot of what we suppose about them cannot be verified. However, there’s still a lot to learn from their surviving cosmic relatives. If a star has a lot of iron, scientists can infer that this star must have formed after a predictable number of stellar generations. For instance, based on its metal content, astronomers believe that the sun is about 100,000 generations away from the big bang.

“The good news is that we can study the first stars through their children – the stars that came after them like the one we’ve discovered,” said study co-author Professor Martin Asplund, a chief investigator of ASTRO 3D at the Australian National University.

Considering the record-low amount of iron found in SMSS J160540.18–144323.1, astronomers believe that it was formed after one of the first stars exploded, just a couple hundred million years after the big bang. Dr. Norlander and colleagues believe that the exploding star that seeded SMSS J160540.18–144323.1’s iron was only ten times more massive than the sun. It must have also exploded rather feebly so most of its iron and other heavy elements were pulled back into the core by the gravity of the remnant neutron star.

It’s remarkable to learn that our galactic backyard still houses stars from the earliest generations — although they might not last for long. The newly found star is a red giant, which means its at the very end of its life cycle before exploding in a supernova. In the future, astronomers hope to find more such second-generation stars that might tell us more about what the early universe looked like.

The study was published in the Monthly Notices of the Royal Astronomical Society.

RelatedPosts

Ancient supernovae might have contributed to Earth mass extinction
New type of supernova discovered. Hint: it’s tiny and faint
The 8 coolest ways the Earth might be destroyed
These bizarre stars could be burning darkness to survive
Tags: starsupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

byOrsola De Marco
4 weeks ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
1 month ago
News

Astronomers Spotted a Ghostly Star Orbiting Betelgeuse and Its Days Are Already Numbered

byTudor Tarita
2 months ago
Astronomy

These bizarre stars could be burning darkness to survive

byMihai Andrei
2 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.