ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astrophysics

Astronomers discover the oldest known star

Mihai AndreibyMihai Andrei
February 10, 2014
in Astrophysics, Remote sensing
A A
Share on FacebookShare on TwitterSubmit to Reddit

A team led by astronomers at The Australian National University has discovered what they believe to be the oldest star in the known Universe – forming shortly after the Big Bang, some 13.7 billion years ago.

This is the first time astrophysicists get the chance to study the chemistry of the oldest stars, giving scientists a clearer idea of what the Universe was like in its infancy.

“This is the first time that we’ve been able to unambiguously say that we’ve found the chemical fingerprint of a first star,” said lead researcher, Dr Stefan Keller of the ANU Research School of Astronomy and Astrophysics. “This is one of the first steps in understanding what those first stars were like. What this star has enabled us to do is record the fingerprint of those first stars.”

The discovery was possible thanks to the ANU SkyMapper – a fully automated 1.35m wide-angle optical telescope at Siding Spring Observatory in northern New South Wales, Australia; the telescope was designed to look at the southern sky in search for ancient stars, as part of a five year project. So far, results are very encouraging.

The ancient star (SMSS J031300.36-670839.3) is 6.000 light years away from us – which is a huge distance in and of itself, but  pretty close in astronomical terms. It is one of the 60 million stars photographed by SkyMapper in its first year, so it was quite the fortuitous find. SMSS J031300.36-670839.3 also has a much higher carbon supply compared to iron, more than a thousand times greater. Apart from hydrogen, which appeared in the Big Bang the star also contains carbon, magnesium, and calcium which could have been formed in a low energy supernova.

“The stars we are finding number one in a million,” says team member Professor Mike Bessell, who worked with Keller on the research. “Finding such needles in a haystack is possible thanks to the ANU SkyMapper telescope that is unique in its ability to find stars with low iron from their colour.”

The chemistry of primordial stars

The spectrum of SMSS J031300.36-670839.3 hardly contains any absorption lines in its spectrum: the strong lines are from hydrogen, and carbon – at 4300A, and from the Earth atmosphere – at 5800 and 6300A; not from the star itself. Image credit: Anna Frebel.
The spectrum of SMSS J031300.36-670839.3 hardly contains any absorption lines in its spectrum: the strong lines are from hydrogen, and carbon – at 4300A, and from the Earth atmosphere – at 5800 and 6300A; not from the star itself. Image credit: Anna Frebel.

Its chemical composition shows it formed in the wake of a primordial star, which had a mass 60 times that of our Sun – so it is basically a second-generation star. In case you’re wondering how astronomers study the chemistry of distant stars (since obviously they can’t go there and take samples), they do it through a technique called astronomical spectroscopy. In astronomical spectroscopy, the object of study is the spectrum of electromagnetic radiation, including visible light, which radiates from stars and other hot celestial objects; judging by the wavelength emitted by the star, a number of properties can be derived, including chemical composition, temperature, density, mass, distance, luminosity, and relative motion using Doppler shift measurements.

“To make a star like our Sun, you take the basic ingredients of hydrogen and helium from the Big Bang and add an enormous amount of iron – the equivalent of about 1,000 times the Earth’s mass,” Dr Keller says. “To make this ancient star, you need no more than an Australia-sized asteroid of iron and lots of carbon. It’s a very different recipe that tells us a lot about the nature of the first stars and how they died.”

It was previously believed that primordial stars didn’t survive the early period of the universe – disappearing in extremely violent explosions which polluted huge volumes of space with iron. But the ancient star shows signs of pollution with lighter elements such as carbon and magnesium, and no sign of pollution with iron.

“This indicates the primordial star’s supernova explosion was of surprisingly low energy. Although sufficient to disintegrate the primordial star, almost all of the heavy elements such as iron, were consumed by a black hole that formed at the heart of the explosion,” he says.

Scientific Reference:

RelatedPosts

Extrasolar hot Jupiter sheds some light on our own solar system
New planet close to size of Earth found
New cosmology model claims Universe may not be expanding
Water and fog found on Titan, Saturn’s moon
Extremely 
Metal-Poor 
Stars. A 
White
 Paper 
Submitted
 for
 High ‐ Resolution 
Optical 
Spectroscopy Gemini.
A single low – energy, iron – poor supernova as the source of metals in the star SMSSJ031300.36 – 670839.3
Tags: ancient starastrophysicsDoppler effectprimordial star

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Astronomy

Scientists Take “Baby Picture” of the Infant Universe and Then Weigh It. Here’s What Its First 380,000 Years Tell Us

byMihai Andrei
3 months ago
News

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

byTibi Puiu
3 months ago
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
6 months ago
Astronomy

NASA spots Christmas “tree” and “wreath” in the cosmos

byMihai Andrei
6 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.