ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

Most distant quasar in known Universe found

Tibi PuiubyTibi Puiu
June 30, 2011
in Astronomy, Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Astronomers have discovered the most distant quasar known so far, dubbed ULAS J1120+0641, powered by a supermassive black hole with a mass 2 billion times that of our sun – it’s also the brightest object in the known Universe.

An image taken through red and blue filters of the. The object itself lies very close to the centre and is not visible in this picture, but many other, much closer, galaxies are seen in this wide-field view that spans about three degrees of sky.  (c)ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin
An image taken through red and blue filters of the. The object itself lies very close to the centre and is not visible in this picture, but many other, much closer, galaxies are seen in this wide-field view that spans about three degrees of sky. (c)ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin

At a redshift of 7.1, placing it at only 770 million years after the Big Bang, the newly discovered quasar is so far away that its light probes the last part of the reionization era. It’s not the most distant known object in space, though. Other bodies have been found at a larger redshift, such as a gamma-ray burst at redshift 8.2 and a galaxy at redshift 8.6, however this quasar is still hundreds of times brighter than both.  The next most-distant quasar is seen as it was 870 million years after the Big Bang (redshift 6.4).

Because objects such as these are so far away, their light gets stretched by the expansion of the Universe, and the light which eventually reaches Earth falls in the infrared spectrum. ULAS J1120 was discovered by the European UKIRT Infrared Deep Sky Survey (UKIDSS), which uses UK’s dedicated infrared telescope in Hawaii. To find it, astronomers had to dig through data consisting in millions of objects in the UKIDSS database – eventually, their efforts were rewarded.

“It took us five years to find this object,” explains Bram Venemans, one of the authors of the study which will appear in Nature on 30 June 2011. “We were looking for a quasar with redshift higher than 6.5. Finding one that is this far away, at a redshift higher than 7, was an exciting surprise. By peering deep into the reionisation era, this quasar provides a unique opportunity to explore a 100-million-year window in the history of the cosmos that was previously out of reach.”

As far as distance goes, that of the quasar was determined from observations made with the FORS2 instrument on ESO’s Very Large Telescope (VLT) and instruments on the Gemini North Telescope. The instruments split the analyzed light into its most basic colours, from which scientists could read some very important facts. For once, the mass of the black hole at the centre of ULAS J1120+0641 is about two billion times that of the Sun. Which, considering its formation into the early Universe, hits contradicts the current leading theory regarding the growth of supermassive black holes, why says that they grow in mass at a slow build-up as they pull matter from their surrounds.

RELATED: Astronomers plot largest 3D  map of the Universe

“We think there are only about 100 bright quasars with redshift higher than 7 over the whole sky,” concludes Daniel Mortlock, the leading author of the paper. “Finding this object required a painstaking search, but it was worth the effort to be able to unravel some of the mysteries of the early Universe.”

source

 

RelatedPosts

When Galaxies Collide: Triple Black Hole System Discovered
Astronomers Discover Largest Radio Jet from the Early Universe. It’s Twice the Width of the Milky Way!
Planets could orbit Supermassive Black Holes
Who is Cecilia Payne-Gaposchkin: The Woman Who Knew The Stars
Tags: Deep Sky Surveyquasarreionizationsupermassive black holeUKIDSSULAS J1120+0641Universe

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

So, Where Is The Center of the Universe?

byRob Coyne
2 months ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
2 months ago
This artist’s illustration shows the largest radio jet ever found in the early Universe. The jet was first identified using the international Low Frequency Array (LOFAR) Telescope, a network of radio telescopes throughout Europe. Follow-up observations in the near-infrared with the Gemini Near-Infrared Spectrograph (GNIRS), and in the optical with the Hobby Eberly Telescope, were obtained to paint a complete picture of the radio jet and the quasar producing it. GNIRS is mounted on the Gemini North telescope, one half of the International Gemini Observatory, funded in part by the U.S. National Science Foundation and operated by NSF NOIRLab. Historically, such large radio jets have remained elusive in the distant Universe. With these observations, astronomers have valuable new insights into when the first jets formed in the Universe and how they impacted the evolution of galaxies.
Science

Astronomers Discover Largest Radio Jet from the Early Universe. It’s Twice the Width of the Milky Way!

byTibi Puiu
6 months ago
News

New research suggests more supermassive black holes than we ever knew

byJordan Strickler
6 months ago

Recent news

mars

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

July 31, 2025

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

July 31, 2025

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.