ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

There’s a strange similarity between your cells and neutron stars

Researchers have found an intriguing resemblance between the human cells and neutron stars.

Mihai AndreibyMihai Andrei
November 4, 2016
in Biology, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers have found an intriguing resemblance between the human cells and neutron stars, some of the the smallest and densest stars known to exist.

Similar shapes — structures consisting of stacked sheets connected by helical ramps — have been found in cell cytoplasm (left) and neutron stars (right). Credit: University of California – Santa Barbara

When I was a kid and I learned about cells and planets, I had a strange idea: what if our planets are just cells inside a gargantuan organism, which itself lives on a planet which itself is a cell… and so on. Well, we’re still a while away from confirming my childhood, but cells and stars might have more in common than you’d think — at least some stars.

In 2014, UC Santa Barbara soft condensed-matter physicist Greg Huber and colleagues explored the geometry of a cellular organelle called the endoplasmic reticulum (ER). They found a distinctive shape, something like a multi-story parking garage. They dubbed them Terasaki ramps after their discoverer, Mark Terasaki, a cell biologist at the University of Connecticut. They found that this shape was virtually unique, reserved for thes specific organelles inside the human body — or so they thought. At one point, they stumbled upon the work of nuclear physicist Charles Horowitz at Indiana University, who was studying neutron stars. Using computer models, he concluded that deep inside neutron stars, similar shapes emerged. Huber was shocked.

“I called Chuck and asked if he was aware that we had seen these structures in cells and had come up with a model for them,” said Huber, the deputy director of UCSB’s Kavli Institute for Theoretical Physics (KITP). “It was news to him, so I realized then that there could be some fruitful interaction.”

Crossing an interdisciplinary border is not easy, especially when it comes to two fields which are so different from one another. But, as it usually happens with these collaborations, the results were outstanding. Astrophysicists have their own terminology for the class of shapes they see in their high-performance computer simulations of neutron stars: nuclear pasta. The surprisingly suitable name has subcategories such as tubes (spaghetti) and parallel sheets (lasagna) connected by helical shapes that resemble Terasaki ramps.

“They see a variety of shapes that we see in the cell,” Huber explained. “We see a tubular network; we see parallel sheets. We see sheets connected to each other through topological defects we call Terasaki ramps. So the parallels are pretty deep.”

However, once you start to look deep enough, differences also start emerging. The relevant physical parameters (temperature and pressure for example) are widely different at cellular and stellar scales.

“For neutron stars, the strong nuclear force and the electromagnetic force create what is fundamentally a quantum-mechanical problem,” Huber explained. “In the interior of cells, the forces that hold together membranes are fundamentally entropic and have to do with the minimization of the overall free energy of the system. At first glance, these couldn’t be more different.”

Still, the similarities are riveting for both biologists and astrophysicists. Is there some intrinsic phenomenon which shapes both things this way, some way of preserving energy or distributing matter, or is it all a grand, cosmic coincidence? Horowitz believes they’re on to something here.

“Seeing very similar shapes in such strikingly different systems suggests that the energy of a system may depend on its shape in a simple and universal way,” he said.

Huber noted that these similarities are still rather mysterious.

RelatedPosts

Astronomers detect magnetic star flashing in an instant with the energy produced by the sun in 100,000 years
Shorties: astronomers detect intergalactic radio signals from 11 billion light years away
Why the gravitational waves splashed by the merger of two dying stars spells a revolution in astronomy
Nanomachines destroy cancer by drilling holes into it

“Our paper is not the end of something,” he said. “It’s really the beginning of looking at these two models.”

Journal Reference: “Parking-garage” structures in nuclear astrophysics and cellular biophysics Phys. Rev. C 94, 055801 – Published 1 November 2016, journals.aps.org/prc/abstract/10.1103/PhysRevC.94.055801

Tags: cellneutron starterasaki ramp

Share6TweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Biology

Your Cells Can Hear You — And It Could Be Important for Fat Cells

byAlexandra Gerea
2 months ago
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
6 months ago
News

Neutron Stars Could Be The Best Place to Look for Dark Matter

byTibi Puiu
8 months ago
Anatomy

What is osmosis: a critical principle in biology

byTibi Puiu
2 years ago

Recent news

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.