ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

How scientists plan on turning Martian and Lunar soil into space concrete

There's no cement on Mars or the Moon, which means we'll have to make it ourselves. Here's an idea how.

Tibi PuiubyTibi Puiu
August 11, 2022
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
A crushed geopolymer cube made from simulated lunar topsoil. Credit: University of Delaware.

It goes without saying that any humans living for extended periods of time on Mars, the Moon, or any other far-off world would have to be entirely self-sufficient. This means they will need to have the necessary means to make their own food, fuel, and even air right then and there, on-site. It all starts with a home, though, and building a permanent settlement so far away from Earth is perhaps the most challenging task of them all.

Think about it. It costs around $2,700 per kilogram to launch stuff into space with a SpaceX Falcon, the rocket now regularly used to supply the International Space Station. That’s still dirt cheap compared to the $55,000 per kilogram it used to cost in the space shuttle days. The cost of getting a kilogram of material to Mars is orders of magnitude more expensive though. It’s not clear how much it costs exactly, but it cost Mars Curiosity about $2.5 billion to land an 889-kilogram rover on Mars, for a per-kilogram cost of approximately $2.78 million.

Even if you had all the money in the world, the free space for a payload on any rocket is limited. It goes without saying that we can’t haul any type of construction materials to Mars or even the Moon.

Geologists and chemists at the University of Delaware have a bright idea though: use the natural resources already present at the destination.

That may sound like an obvious thing to do, but turning Martian dirt into a reliable and working construction material is anything but straightforward.

One major requirement for any off-world settlement is durability and strength. Concrete is great for this, but the recipe requires cement, which cannot be carried through space.

To solve this problem, researchers led by professor Norman Wagner of the University of Delaware turned to geopolymer chemistry. Geopolymers are inorganic polymers consisting of aluminosilicate minerals that form solid ceramic-like materials at near ambient temperatures. Here on Earth, they’re typically found in clays virtually everywhere in the world.

RelatedPosts

Most of UK’s fruits and vegetables contain a mixture of pesticides — but is this a concern?
Researchers unravel the mysteries of a Middle Ages nanomaterial
New footage of Moon Landing found
Why we use the QWERTY keyboard layout — and why it’s probably not the best design

When these geopolymers are mixed with an alkaloid solvent, such as sodium silicate, the clay is dissolved, freeing the aluminum and silicon to react with other substances and form new materials — and this includes cement.

Soils on Mars or the Moon also contain these common clays but “this is not a trivial thing,” Wagner said. “You can’t just say give me any old clay, and I’ll make it work. There are metrics to it, chemistry that you have to worry about.”

Off-world cement

For their new study, the scientists mixed simulated Martian and lunar soil with sodium silicate, then cast the liquid mixture in cube-shaped molds. After a week, the material from each cubic mold was removed, measured, and weighed, before they had their structure tested to see how much load they could withstand. The materials were also subjected to various environmental factors they would encounter in space, including vacuum, as well as high and low temperatures.

“When a rocket takes off there’s a lot of weight pushing down on the landing pad and the concrete needs to hold, so the material’s compressive strength becomes an important metric,” Wagner said. “At least on Earth, we were able to make materials in little cubes that had the compressive strength necessary to do the job.”

The researchers reported the successful conversion of one Martian regolith simulant and three lunar regolith simulants to geopolymer binders. The tests showed that the geopolymer cement had a poor compressive strength when formed under vacuum. Meanwhile, at temperatures of -80 degrees Celsius or less, the geopolymer didn’t undergo a chemical reaction at all. This shows that astronauts would have to cast these materials in a pressurized environment and the geopolymer would have to be heated.

Understanding what affects the strength of materials sourced from other worlds is critical to maintaining a viable colony. This is why the researchers plan on improving their recipe while noting the importance of exploring the topsoil materials on Mars and the Moon in greater depth because every bit of information matters.

There are a lot of things that could go wrong, but the plan itself sounds good. Rather than packing sacks of cement to send to Mars, which would be both foolish and futile, astronauts could just take the solvents with them. The quantity they would need to build a decent-sized settlement can very well fit the payload range of a Mars-bound rocket.

And if all else fails, at least we have the chance to make better concrete here on Earth. Geopolymers need less water than traditional cement to make because the water itself is not consumed by the reaction. This means it can be recovered and reused. Researchers at the University of Delaware are already busy building 3D-printed homes using geopolymer cement, which they plan on activating using microwave technology.

The findings appeared in the journal Advances in Space Research.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Art

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

byTibi Puiu
32 minutes ago
News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
3 hours ago
Biology

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

byTibi Puiu
3 hours ago
Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
3 hours ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.