ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Exploding stars may have wiped off large ocean life 2.5 million years ago

The planet's largest shark may have been killed by a supernova.

Tibi PuiubyTibi Puiu
December 13, 2018
in Animals, Environment, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
A supernova explosion may have triggered radiation exposure in Megalodon and countless other ancient marine megafauna. Credit: NASA Goddard Photo/Wikimedia Commons.
A supernova explosion may have triggered radiation exposure in Megalodon and countless other ancient marine megafauna. Credit: NASA Goddard Photo/Wikimedia Commons.

About 2.6 million years ago, nearly a third of the world’s large marine species mysteriously disappeared from the world’s oceans. Among them were huge apex predators, such as Carcharocles megalodon, which ruled the seas for over 20 million years. Climate change played an important role in the demise of Megalodon and other creatures like it, but it alone doesn’t seem to explain the magnitude of the Pliocene marine megafauna extinction. Now, a new study suggests that the extinction event may have a cosmic origin — a supernova, or possibly a string of supernovae, may have bombarded the oceans with radiation that decimated the largest marine creatures.

Death from above

In a new study led by Adrian Melott, professor emeritus of physics and astronomy at the University of Kansas, researchers describe evidence of nearby supernovae, whose explosion coincided with the onset of the Pliocene megafauna die-off.

When a star is ready to drop the curtain, it goes out with a bang — a titanic explosion known as a supernova. Although it might sound dramatic, these highly energetic events are quintessential to seeding new stars and solar systems, as they expel and distribute matter throughout the universe. Thus, understanding supernovae is key to demystifying the grander astronomic picture — how the cosmos evolves and how we all came to be.

Supernovae can also be destructive if something happens to cross their path. Melott and colleagues claim that a series of such explosions occurred between 8.7 million and 1.7 million years ago, at about 325 light-years from Earth. That’s far away enough not to cause catastrophic damage but close enough to bombard Earth with cosmic radiation. And this radiation may have been powerful enough to triggered mutations that led to cancer among Earth’s megafauna. The larger an animal was during such conditions, the more radiation it would absorb, thereby making them more vulnerable to the supernova-sourced radiation. The researchers estimate that the cancer rate would have gone up by about 50% for something the size of a human, but it would have been much worse for something as big as an elephant or whale.

“I’ve been doing research like this for about 15 years, and always in the past it’s been based on what we know generally about the universe — that these supernovae should have affected Earth at some time or another,” said Melott, in a statement. “This time, it’s different. We have evidence of nearby events at a specific time. We know about how far away they were, so we can actually compute how that would have affected the Earth and compare it to what we know about what happened at that time — it’s much more specific.”

Scientists know that such supernovae have occurred and pointed towards Earth due to iron-60 isotopes that have been engraved on the seafloor. These isotopes have a half-life of about 2.6 million years, so if they formed with the Earth, they would have been long gone. But instead, such isotopes can still be found in sediments drilled from the bottom of the seas and oceans. This can only mean evidence of radiation bombardment from one or multiple supernova events.

Specifically, muons may have been the culprit for the Pliocene marine extinction. The muon is an elementary subatomic particle similar to the electron but 207 times heavier. Muons are all around us, the products of cosmic radiation interacting with the atmosphere. However, the supernova radiation may have triggered extra muon exposure — much more than life can normally tolerate.

“The best description of a muon would be a very heavy electron — but a muon is a couple hundred times more massive than an electron,” Melott said. “They’re very penetrating. Even normally, there are lots of them passing through us. Nearly all of them pass through harmlessly, yet about one-fifth of our radiation dose comes by muons. But when this wave of cosmic rays hits, multiply those muons by a few hundred. Only a small faction of them will interact in any way, but when the number is so large and their energy so high, you get increased mutations and cancer — these would be the main biological effects. We estimated the cancer rate would go up about 50 percent for something the size of a human — and the bigger you are, the worse it is. For an elephant or a whale, the radiation dose goes way up.”

But if that were the case, why didn’t land animals go extinct at a similar rate? Radiation from the sun and the cosmos typically can’t penetrate more than a couple of feet of water, thereby shielding marine life. However, the shielding doesn’t work for muons. Suddenly, creatures that had adapted to a low-radiation environment for millions of years become exposed to a lot of it. Land animals, on the other hand, were adapted to radiation exposure and weren’t as affected as marine life.

RelatedPosts

Large carnivores like the lion or tiger lost more than 90% of their range in the last 500 years
Raptor birds around the world are in decline, as they struggle with habitat loss and poisoned foods
‘Survival of the laziest’: species that consume less energy better suited to dodging extinction
Gravitational waves have scientists searching for answers

And as if supernova radiation wasn’t scary enough. Around the same time, 2.6 million years ago, the planet’s magnetic poles reversed, which opened the floodgates for muon bombardment. The final nail in the coffin was climate change — around the same time a new Ice Age started, greatly diminishing coastal food supplies.

All of these factors form a complex, but a plausible picture that may explain the extinction of Earth’s marine giants.

“There really hasn’t been any good explanation for the marine megafaunal extinction,” Melott said. “This could be one. It’s this paradigm change — we know something happened and when it happened, so for the first time we can really dig in and look for things in a definite way. We now can get really definite about what the effects of radiation would be in a way that wasn’t possible before.”

You can read the entire study here.

Tags: extinctionMegalodonsupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
4 weeks ago
News

Megalodon May Have Eaten Whatever It Could Find to Feed Its 100,000-Calorie-Per-Day Diet

byTibi Puiu
1 month ago
News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
1 month ago
Animals

Scientists Map the DNA of a Mysterious Creature Called the Asian Unicorn That No One’s Seen in Years

byTudor Tarita
2 months ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.