ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

The most energetic light recorded thus far hits Tibetan plateau

Gamma-ray particles trillions of times more energetic than regular light hit the Tibetan plateau.

Tibi PuiubyTibi Puiu
June 27, 2019
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

U2 spy plane finds thunderstorms generate gamma rays all the time
Scientists just turned light-based information into readable soundwaves
How Black Holes and Neutron Stars Shine
Armada of instruments witness the brightest cosmic event of the century: the birth of a black hole
Crab Nebula as seen by Hubble and Herschel. Credit: Wikimedia Commons.

An experiment involving over 600 particle detectors stretched over 36,900 square meters has measured the most energetic light ever witnessed on this planet. The photons were part of gamma rays emanating from the famous Crab Nebula, the remains of a supernova that was first observed in 1054 AD, which is located approximately 6,500 light years away. These photons measured tremendously high values exceeding 100 trillion electron volts (TeV), with one measurement clocking in 450TeV — the highest ever recorded. Previously, photons measuring no more than tens of trillions of electronvolts had been recorded.

Physicists started the Tibet Air Shower Gamma Collaboration, an observatory in the Tibetan Plateau some 4,300 meters above sea level because rarified air at this altitude allows more secondary particles to reach detectors. Secondary subatomic particles are created when cosmic rays and gamma rays interact with particles in the upper atmosphere.

By measuring and excluding muon particles — an elementary subatomic particle similar to the electron but 207 times heavier — physicists were able to backtrack the energy and origin of the incoming gamma rays that caused the showers. A total of 24 events caused by intense photons with energies higher than 100 trillion electronvolts were reported. To get a sense of the scale involved, regular photons that emanate from the sun — particles of visible light — have an energy of only a few electronvolts.

Now that scientists have experimental confirmation that high-energy photons reach Earth, they can elaborate a more precise model for how such particles are created and whether or not there’s a limit to how much energy they can carry.

In this particular case, researchers think that the gamma rays were accelerated by a process known as Inverse Compton scattering — a process during which super high-energy electrons bounce off lower energy photons. Inside the Crab Nebula, electrons may have scattered off low-energy photons from the cosmic microwave radiation (photons created soon after the Big Bang).

The findings appeared in the journal Physical Review Letters.

Tags: Crab Nebulagamma raylightnebula

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Inventions

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

byTudor Tarita
2 weeks ago
Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
4 weeks ago
News

Happy Cosmic Valentine’s Day! Here’s a Stellar Bouquet For You

byMihai Andrei
5 months ago
News

U2 spy plane finds thunderstorms generate gamma rays all the time

byTibi Puiu
9 months ago

Recent news

Your gut has a secret weapon against ‘forever chemicals’: microbes

July 3, 2025

High IQ People Are Strikingly Better at Forecasting the Future

July 3, 2025

Newborns Feel Pain Long Before They Can Understand It

July 3, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.