ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

DNA survives space launch and planetary re-entry. Huge implications for alien life

Tibi PuiubyTibi Puiu
November 27, 2014
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

An experiment fortuitously called DARE (DNA atmospheric re-entry experiment) has come to a most unexpected conclusion: DNA can indeed survive full exposure to space flight and atmospheric re-entry. The findings were reported after DNA molecules placed onto the outer surface of a rocket were collected and analyzed upon its return. Moreover, even after bearing these extreme conditions, the DNA was still able to pass its genetic information. In the context of both the origin of life on Earth and our search for other alien life in our solar system and beyond, the findings bear an important significance. It means that the genetic code for life could have arrived on Earth from a meteorite. It also means that if we find DNA on Mars, for instance, then it would be more likely that it’s a contamination, brought from Earth, than a genuine Martian DNA.

Hardy DNA

DNA_stock
Image: Wikimedia Commons

Initially, University of Zurich researchers  Dr. Cora Thiel and Professor Oliver Ullrich had a different missions statement in mind for the EXUS-49 research rocket. They wanted to know how gravity interferes with gene expression in human cells. They would study the cells using remote-controlled hardware inside the rocket’s payload. Soon enough, an interesting thought crept: why not place biosignatures on the payload’s surface to see how stable they are in space and on re-entry. Biosignatures are molecules that can prove the existence of past or present extraterrestrial life.

[ALSO SEE] DNA sequencer for Mars alien life

Before EXUS-49 launched, the team applied numerous small, double-stranded DNA molecules to the payload’s outer shell. After returning to Earth, many of the so-called plasmid DNA molecules were still intact following space flight and atmospheric re-entry, where brutal forces and temperatures can be felt. The researchers were taken aback in surprise:

“We were completely surprised to find so much intact and functionally active DNA.”

The rocket TEXUS-49 launching off the Esrange Space Center in Kiruna, North Sweden. Photo: Adrian Mettauer
The rocket TEXUS-49 launching off the Esrange Space Center in Kiruna, North Sweden. Photo: Adrian Mettauer

Following retrieval, it was also found that not only did the molecules survive, but that the DNA was also able to transfer genetic information to bacterial and connective tissue cells.  It’s now clear that DNA can remain stable even when faced with extreme conditions, though it would have been more revealing if the experiment had lasted more than a couple of days.

It’s yet unclear if alien DNA travelling for billions of miles, piggybacking a comet or meteorite would be able to survive an impact with Earth, but in light in this evidence chances aren’t that far off. It makes the hypothesis of life on Earth having originated from a seed dispersed by some alien world plausible. Each day, some 100 tons of dust and meteorites hit Earth’s atmosphere, but a couple billion years ago our planet wasn’t as well shielded. The more practical implication of the study’s findings, however, is that DNA can very well survive planetary entry and exit. This means that a mission to Mars where payload is deployed on the surface – like the Curiosity rover – runs a big risk of contaminating with DNA.

“The results show that it is by no means unlikely that, despite all the safety precautions, space ships could also carry terrestrial DNA to their landing site. We need to have this under control in the search for extraterrestrial life,” points out Ullrich.

Findings appeared in the journal PLoS One.

RelatedPosts

Infant skeleton sheds new light on early Native American populations
Jurassic Park inspires amber-like DNA digital data storage
An ancient human who lived in Romania had almost 9% Neanderthal DNA
SETI shuts down due to lack of funding
Tags: alien lifedna

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
3 weeks ago
Genetics

Scientists Close to Finding Leonardo da Vinci’s DNA Using a 21-Generation Family Tree

byTibi Puiu
3 weeks ago
Anthropology

Scientists Found a Neanderthal Population That Lived in Total Isolation for 50,000 Years

byTudor Tarita
3 weeks ago
Genetics

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

byTibi Puiu
4 weeks ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.