ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Scientists observe ‘black widow’ pulsar in unprecedented resolution

A rapidly rotating star is consuming a helpless brown dwarf, and scientists are recording the event in excruciating detail.

Tibi PuiubyTibi Puiu
May 25, 2018
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Astronomers have performed one of the highest resolution surveys in astronomical history, imaging two extremely intense regions of radiation around a pair of stars that orbit each other. To get a sense of the scale involved in the study, imaging using a telescope on Earth to see a flea on the surface of Pluto, which is 4.67 billion miles (7.5 billion kilometers) away from us.

Artist impression of brown dwarf star orbiting a pulsar, which is slowly eroding the former. Credit: Dunlap Institute for Astronomy & Astrophysics, University of Toronto.
Artist impression of a brown dwarf star orbiting a pulsar, which is slowly eroding the former. Credit: Dunlap Institute for Astronomy & Astrophysics, University of Toronto.

This groundbreaking observation was made possible by the rare alignment and characteristics of a pair of stars orbiting each other roughly 6,500 light-years away. One is a brown dwarf — a substellar object that has an intermediate mass between a planet and a star — with a “wake” or comet-like tail. The other is rapidly spinning neutron star called a pulsar that emits a pulse of electromagnetic radiation, akin to a lighthouse.

The pulsar is only a few kilometers across but due to its incredibly high density, it’s more massive than our sun.

“The gas is acting as like a magnifying glass right in front of the pulsar,” said Robert Main, lead author of the new study published in the journal Nature. “We are essentially looking at the pulsar through a naturally occurring magnifier which periodically allows us to see the two regions separately.” Main, who is a Ph.D. student at the Department of Astronomy & Astrophysics at the University of Toronto, worked closely with colleagues at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics and Canadian Institute for Theoretical Astrophysics, and the Perimeter Institute.

As the pulsar spins over 600 times a second, it emits a beam of high-power radiation from two hotspots on its surface. The less massive brown-dwarf star orbits the pulsar very quickly, in just over 9 hours, tracing a radius of roughly two million kilometers in size.

Since the brown dwarf star is so close to the pulsar, it gets blasted by the strong radiation beam, on only one side of the tidally-locked dwarf star. What should have been a relatively cool object actually is as hot as the sun’s surface, somewhere around 6000° C.

In time, the intense radiation will erode the brown dwarf until its matter is consumed by the pulsar, whose gravity will funnel gas and dust towards its center. For this reason, pulsars in this sort of binary system configuration are unceremoniously called ‘black widows,’ after the famous spider that eats its mate.

That’s pretty bad news for the brown dwarf, but on the flip side, it’s a great opportunity for science. Because of the way the brown dwarf’s mass alters light from the pulsar, Main and colleagues were able to make out features around the star some 20 kilometers apart — which is incredibly small, if you consider the scales and sizes involved here.

RelatedPosts

After three successful flights, NASA’s Mars helicopter soars to higher ambition
Bacteria replicate close to the limit of thermodynamic efficiency
Webb telescope may revolutionize science – but at an astronomic cost
New carnivorous dinosaur unearthed in Patagonia is a striking T-rex look-alike — but unrelated to it

An important caveat is that these features were recorded as data points and not as optical images. This means that for the average viewer, the images won’t mean much. But ultimately, for the researchers, the data they’ve gathered is a veritable gold mine, which will allow them to better their understanding of the dynamics of pulsar-brown dwarf systems.

What’s more, the findings might offer valuable clues to the nature of mysterious phenomena known as Fast Radio Bursts, or FRBs.

“Many observed properties of FRBs could be explained if they are being amplified by plasma lenses,” say Main. “The properties of the amplified pulses we detected in our study show a remarkable similarity to the bursts from the repeating FRB, suggesting that the repeating FRB may be lensed by plasma in its host galaxy.”

Share2TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Invertebrates

The Worm That Outsourced Locomotion to Its (Many) Butts

byMihai Andrei
22 minutes ago
History

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

byMihai Andrei
1 hour ago
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons
Bizarre Stories

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

byMihai Andrei
3 hours ago
News

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We’ve Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

byTibi Puiu
3 hours ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.