ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Auroras act like speed bumps for satellites, dragging them down towards Earth

Auroras are dazzling to behold, but also a nuisance for the aerospace industry.

Tibi PuiubyTibi Puiu
April 25, 2019
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

What’s up with Steve: A new kind of aurora demystified by scientists
SpaceX has clean satellite launch, but crashing landing
Musk seeks permission from the FCC to test his ambitious space internet
UAE sends Hope probe to Mars in first major project
Credit: Wikimedia Commons.
Credit: Wikimedia Commons.

Auroras are some of the most dazzling light shows in the world but for the aerospace industry, they can be a real nuisance that could cost billions in damages. According to recent research, northern and southern lights cause satellites to slow down, which brings them closer to Earth. And if the satellites don’t have any more fuel left to boost them back to their intended orbits, they will eventually fall into Earth’s atmosphere.

For decades, scientists have been aware that when the sun’s activity is high, orbiting satellites tend to slow down. Auroras are caused by charged particles like electrons that interact with molecules from a planet’s atmosphere or magnetosphere. Scientists suspected that the charged particles also loft pockets of air high enough for satellites to interact with them. The drag caused by the air molecules would then slow the satellites, pulling them closer to Earth. Now, a recent mission has confirmed that this theory is probably true.

In 2015, scientists launched the Rocket Experiment for Neutral Upwelling 2 (RENU2) straight into the northern lights in order to understand how solar activity alters the atmosphere. The mission focused on Poleward Moving Auroral Forms (PMAFs), a type of fainter auroras which appear as dancing clouds on dark nights in high latitudes. The reason why PMAFs are o particular interest in this kind of research is that they form higher in the atmosphere and are less energetic than the more common and spectacular auroras. PMAFs dance at about 150 to 250 miles above the surface while most auroras typically form at an altitude of only 60 miles.

Researchers at the University of New Hampshire who led the project found that although PMAFs are weaker than most forms of auroras, their energy was still high enough to heat air pockets, causing them to drift upwards. As an analogy, the researchers likened the phenomenon to bubbles rising in a lava lamp. The study also found that the PMAF’s activity isn’t uniform but rather acts in narrow wisps that collectively affect areas larger than ten miles across. PMAFs also ebb and flow, changing their structure within minutes.

In the future, this kind of information will help engineers design safer satellites that can remain operational in orbit for longer.

The results appeared in the journal Geophysical Research Letters. 

Tags: aurorasatellite

Share8TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

byTibi Puiu
2 months ago
News

We Should Start Worrying About Space Piracy. Here’s Why This Could be A Big Deal

byTibi Puiu
2 months ago
News

Boeing-Built Satellite Disintegrates in Orbit, Leaves Behind Dangerous Trail of Debris

byTibi Puiu
8 months ago
Science

Satellite-based radar shows how much Chinese cities have grown in the past three decades

byMihai Andrei
10 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.