ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astrophysics

Two supermassive black holes set for a collision that will shake the cosmos itself

That's what I call fatal attraction: two supermassive black holes are "dancing", drawn together by each other's humongous gravitational attraction, set for a collision that will likely send ripples through the very fabric of space-time.

Dragos MitricabyDragos Mitrica
September 18, 2015 - Updated on August 31, 2023
in Astrophysics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

That’s what I call fatal attraction: two supermassive black holes are “dancing”, drawn together by each other’s humongous gravitational attraction, set for a collision that will likely send ripples through the very fabric of space-time.

Image via Columbia University.

As you probably know by now, black holes are anything but empty – rather quite the opposite. Black holes are the most packed matter we know of, with so much mass that even light can’t escape them. Supermassive black holes are, as the name suggests, very massive black hole. How massive? Well, as beautifully portrayed here, they can be millions or billions of times more massive than the Sun – while being smaller than Pluto; it’s thought that most galaxies have supermassive black holes at their center. Astrophysicists have often asked themselves what would happen if two black holes were to collide (or merge), and they might finally get their answer thanks to a bleeping light.

The pair of black holes is located 3.5 billion light-years away, deep in the Virgo constellation, separated by a mere light-week. The previous closest black hole pair found was 20 light years away in comparison.

“This is the closest we’ve come to observing two black holes on their way to a massive collision,” said the study’s senior author, Zoltan Haiman, an astronomer at Columbia. “Watching this process reach its culmination can tell us whether black holes and galaxies grow at the same rate, and ultimately test a fundamental property of space-time: its ability to carry vibrations called gravitational waves, produced in the last, most violent, stage of the merger.”

The light isn’t coming from the pair itself, but rather from the turbulence around them. What we didn’t know, however, is why the light appears to be flashing: brightly shining, dimming, and repeating again and again. As these black holes orbit around each other, they are thought to send out a varying light signal. The signal was detected by astronomers using telescopes on the ground and in space. Now, Daniel D’Orazio, Zoltan Haiman, and David Schiminovich at Columbia University built a simulation of the pair and have now come up with a valid and intriguing explanation. They found that the orbit of the black holes is responsible for the intermittent signal. They are orbiting around each other, like a pair of spinning dancers.

Interestingly, it’s not the bigger, but the smaller black hole that’s bleeping the strongest. This happens because the smaller one is less able to throw around interstellar dust, which means that more gas ends up drifting close to it – and it’s this gas that gives off the bright glow.

The blackholes will collide in about 100,000 years, but until then, researchers will be getting valuable information which the gravitational waves predicted, but not yet detected, by Einstein’s general theory of relativity, grows.

“We can start to put numbers on the rates that black holes come together and build up into larger black holes, and use what we’re learning to search for more black holes pairs,” said study coauthor David Schiminovich, an astronomer at Columbia.

That would be indeed a monumental achievement – and colliding black holes could just do it.

RelatedPosts

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova
Astronomers discover the fastest-growing black hole we’ve ever known
Astronomers capture light from first stars using bright galaxies
To birth supermassive black holes in the early universe, some galaxies may have had to be sacrificed

“The detection of gravitational waves lets us probe the secrets of gravity and test Einstein’s theory in the most extreme environment in our universe–black holes,” said the study’s lead author, Daniel D’Orazio, a graduate student at Columbia. “Getting there is a holy grail of our field.”

Journal Reference: Daniel J. D’Orazio, Zoltán Haiman & David Schiminovich. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate. Nature 525, 351–353 (17 September 2015) doi:10.1038/nature15262

Tags: supermassive black hole

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
6 days ago
News

New research suggests more supermassive black holes than we ever knew

byJordan Strickler
5 months ago
Astronomy

Scientists find the biggest black hole jets — “we are talking about 140 Milky Way diameters”

byMihai Andrei
9 months ago
Illustration of the black hole Sagittarius A* at the center of the Milky Way.
News

Astronomers reveal 3-D structure of rotating flares from Milky Way’s supermassive black hole

byJordan Strickler
1 year ago

Recent news

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

June 11, 2025

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.