ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astrophysics

What shape is the Universe, really?

The Universe is flat, according to modern research. But what does that mean?

Mihai AndreibyMihai Andrei
January 5, 2017
in Astrophysics, News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

The Universe is flat, according to modern research. But what does that mean?

Geometry, Topology, and the Big Bang

The detailed, all-sky picture of the infant universe created from nine years of WMAP data. The image reveals 13.77 billion year old temperature fluctuations (shown as color differences) that correspond to the seeds that grew to become the galaxies. Image credits: NASA / WMAP

Thinking about the shape of the Universe is in itself a bit absurd. When you consider the shape of anything, you view it from outside – yet how could you view the universe from outside? When discussing this, astronomers generally approach two concepts:

  1. The local geometry. This concerns the geometry of the observable universe, along with its curvature.
  2. The global geometry. This concerns the topology, everything that is, as opposed to everything we can observe.

If we can observe the entire universe and we’re not limited somehow by its geometry or another characteristic, then the two coincide. But there’s a good chance that the two don’t coincide, and our observations are limited somehow by an intrinsic characteristic of the universe – we can’t really know, at least not now.

Most people would expect the universe in its entirety to be symmetrically round – a sphere-like shape, sort of like the Earth. Speaking of the Earth, let’s consider it for a while. We know the Earth is not flat, but what does that mean? Geometrically, it means that parallel lines on its surface aren’t really parallel. All lines, even if they do start parallel, would end up uniting at one of the Poles, and the distance between them will not be constant. As below:

Three possible shapes of the Universe: closed, open and flat from top to bottom. Image credits: NASA.

So a flat Universe would mean that drawn parallel lines remain parallel – and herein lies the key. Broadly speaking and simplifying things, scientists noted that the light from several galaxies remains parallel to each other, across large distances of the universe. The Baryon Oscillation Spectroscopic Survey (BOSS) telescope gave some very strong evidence that the observable universe is indeed flat, and the implications are puzzling.

“One of the reasons we care is that a flat universe has implications for whether the universe is infinite,” said David Schlegel, a member of the Physics Division of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory. “That means – while we can’t say with certainty that it will never come to an end – it’s likely the universe extends forever in space and will go on forever in time. Our results are consistent with an infinite universe.”

Here’s an excellent video which details why the Universe is probably flat:

Finite vs Infinite

Another debate about the universe which involves its shape is infinity. The universe is really big, we know that, but is it really infinite?

RelatedPosts

Dark flow leads researchers to exotic conclusion
You can now hold the whole (simulated) universe in the palm of your hand
We’ve just found the earliest traces of hydrogen, showing when the first-ever stars ignited
Astronomers finally find the earliest molecule in the Universe

Since ancient times, humans have asked themselves that. In the 18th century, German astronomer Heinrich Wilhelm Olbers came up with a paradox: if the Universe is infinite, then the sky wouldn’t be dark. Why? Because in any direction you’d look, there would be infinite space and eventually, you’d encounter a star which would send its light. The night sky doesn’t completely light up so voila, the universe isn’t infinite. Unfortunately, it’s not as simple as that. There could be a number of explanations for Olber’s paradox, and none are simple. The universe is expanding rapidly, so distant stars are red-shifted into obscurity. Or light from other stars simply hasn’t reached us yet – again, we can’t really know. What we do know is that objects more than about 13.7 billion years old (the latest figure) are too far away for their light ever to reach us. So we pretty much know the age of the Universe, but what about its size?

You could say “Why don’t we just look in all directions and see how big it is?” but alas, once more – it’s not so simple.

Universe in an expanding sphere. The galaxies farthest away are moving fastest and hence experience length contraction and so become smaller to an observer in the centre. Image credits: Drschawrz

The diameter of the observable Universe is 91 billion light-years. The distance the light from the edge of the observable universe has traveled is very close to the age of the Universe times the speed of light, 13.8 billion light-years, but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart. Because we cannot observe space beyond the edge of the observable universe, we can’t know directly whether the Universe is inifinite or not. Modern measurements, including those from the Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and Planck maps of the CMB, suggest that the Universe is infinite in extent, but it’s still an ongoing debate.

But what about the Big Bang?

A representation of the evolution of the universe over 13.77 billion years. The far left depicts the earliest moment we can now probe, when a period of “inflation” produced a burst of exponential growth in the universe. Image credits: NASA / WMAP

Most people have some kind of basic idea about what happened during the Big Bang, and this is where the most misconceptions lie. Because that’s when space came into existence, most people imagine it expanding in all directions equally – but that’s likely not how things went down. Before the Big Bang, there was no space or time. So, there is nothing “outside” the Big Bang in which the universe to expand to. The Universe simply expanded from a very small volume into a huge volume, and this expansion is occurring even today – but there’s no guarantee that the expansion took place symmetrically, in all directions.

So let’s get back to the local and global geometry. What our scientific observations are detecting is the local geometry, the observable universe (we can only observe the “observable” – hence the name). Our observations, as thorough and well thought as they may be, can’t be exhaustive.

The overall shape of the Universe

So, in the end, we’re left with a potentially flat, potentially infinite universe, but what is its global shape? Unfortunately, we don’t really know. Even if lines are parallel and the observable universe is flat, it doesn’t mean that the whole universe is flat. It could be a Möbius strip for all we know—a shape where space bends and distorts, but lines stay parallel, ultimately connecting one end of space to another.

At the end of the day, there are three distinct possibilities, all with their own distinct implications:

  • Universe with zero curvature. A flat universe. Not necessarily infinite, and not necessarily looking like a sheet of paper. It could also have a shape like a torus.
  • Universe with positive curvature.  A sphere-like shape.
  • Universe with negative curvature. You can think of it locally as a three-dimensional analog of an infinitely extended saddle shape.

We don’t know which one is true. What we do know is that the observable universe is flat – and that in itself is a remarkable finding.

Tags: shape of the universesize of the universeUniverse

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

So, Where Is The Center of the Universe?

byRob Coyne
23 hours ago
Astronomy

Scientists find the biggest black hole jets — “we are talking about 140 Milky Way diameters”

byMihai Andrei
9 months ago
Cecilia Payne would overcome the adversity that faced women in academia at the turn of the century to blaze a trail through physics and become one of the most important figures in astrophysics.
People

Who is Cecilia Payne-Gaposchkin: The Woman Who Knew The Stars

byRob Lea
11 months ago
News

Astronomers discover rare pair of quasars about to merge into new galaxy

byJordan Strickler
2 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.