ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astrophysics

Biggest Planets Started out as Tiny Pebbles

Dragos MitricabyDragos Mitrica
August 21, 2015
in Astrophysics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Gas giants like Saturn or Jupiter may have formed not from a planetary core, but rather from tiny pebbles that stuck together. This theory would solve one of the biggest problems about our understanding of planetary formation: the timeline.

Artistic depiction of planetary accretion. Image via Planetary Hunters.

The previous model was called core accretion: you have a planetary core of rock and ice that starts to attract and keep other rocky objects, forming a larger and larger object, until it has enough gravitational attraction to start pulling gas and dust, creating a gas giant. But Jupiter’s and Saturn’s core is huge, much larger than the entire Earth, and that’s a problem.

The two gas giants must have formed very early in our solar system, because the formation of gas giants typically only lasts for 10 million years – compared to the Earth, whose formation lasted some 30 million years. But how could the same process create a much larger core in 10 million years than it did in 30 million years?

“The timescale problem has been sticking in our throats for some time,” Hal Levison, scientist in the SwRI Planetary Science Directorate and lead author of the paper, said in a statement. “It wasn’t clear how objects like Jupiter and Saturn could exist at all.”

He, alongside SwRI research scientist Katherine Kretke and Martin Duncan, a professor at Queen’s University in Kingston, Ontario came up with a solution for that problem; they call it the pebble accretion model.

The interior of the gas giants. Credit: RHorning/wikimedia

Pebble accretion involves much smaller pieces of rock, ranging from between one centimetre and one metre in size (0.4in to 3.3ft) – yes, they’re actual pebbles. These pebbles accumulate together and ultimately collapse under the growing gravity, attracting more pebbles. At a first glance, this seems counter-intuitive. I mean, the process is pretty similar to core accretion, except you start out with smaller rocks, so it should be slower, but this continuous movement creates winds, which can blow pebbles towards the accumulating core.

RelatedPosts

Scientists coax bacteria towards silicon-based life
Earth is much more rivery than we’ve suspected, satellite data reveals
NASA’s solar-powered Juno shuttle breaks record distance at 793 million km from the Sun
The Earth had continental crust much earlier than thought — potentially life, too

“If the pebbles form too quickly, pebble accretion would lead to the formation of hundreds of icy Earths. The growing cores need some time to fling their competitors away from the pebbles, effectively starving them. This is why only a couple of gas giants formed,” Kretke explained.

This model hasn’t been confirmed and it will be very difficult to confirm it directly, but it seems to fit with the existing objects in our solar system.

“As far as I know, this is the first model to reproduce the structure of the outer solar system, with two gas giants, two ice giants (Uranus and Neptune), and a pristine Kuiper belt,” Levison said.

 

Tags: accretionearthgas giantjupiterplanetary accretionsaturn

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

Environment

Humans Built So Many Dams, We’ve Shifted the Planet’s Poles

byTudor Tarita
2 months ago
Astronomy

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

byTudor Tarita
2 months ago
News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
4 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
6 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.