Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Researchers find a way to grow wood in a lab, and it could curb global deforestation

Your future furniture might be produced with lab-grown wood

Fermin Koop by Fermin Koop
July 22, 2022
in Environment, Environmental Issues, Materials, News, Science

You’ve probably heard about lab-grown meat, sparing animals from slaughter, and lowering greenhouse gas emissions. Well, it turns out this isn’t the only thing researchers are trying to recreate at a laboratory. A team at MIT in the United States is already working on “growing” wood without relying on sunlight or even soil.

Image credit: Flickr / Chuck Coker

The process is strikingly similar to lab-grown meat. The researchers create structures made of plant cells that mimic wood, but without having to clear down forests. The cells don’t come from trees but instead from a flowering plant called Zinnia originally from Mexico. They are then turned into a rigid structure using plant hormones. They essentially “grow” the wood.

They chose the Zinnia plant because it grows fast and is well studied. The cells reproduced before being transferred to a gel for further development. Once they grew in volume, the cells were tested against different variables such as pH and hormone concentration. It will be a long road to make this cost-effective but the work represents a starting point for novel approaches to biomaterial production, reducing the environmental pressure from forestry and agriculture.

Between 1990 and 2016, over 500,000 squared miles of forests were lost due to wood consumption and the clearing of wooded areas to access arable lands.

The researchers highlighted a number of inefficiencies inherent to agriculture and forestry, some that can be managed such as fertilizer draining off fields, and some that are out of the control of the farmer, such as weather and seasonality. Also, only a fraction of the harvested plant ends up being used for food or materials production.

“The way we get these materials hasn’t changed in centuries and is very inefficient. This is a real chance to bypass all that inefficiency,” Luis Fernando Velásquez-García, who is overseeing the MIT research, said in a statement. “Plant cells are similar to stem cells in the sense that they can become anything if they are induced to.”

To achieve wood-like properties, the researchers used a mix of two plant hormones called auxin and cytokinin. They varied the levels of these hormones so to control the cell’s production of lignin – an organic polymer that gives wood its firmness. The cellular composition and structure of the final product were assessed using fluorescence microscopy.

The researchers acknowledged that they are in a very early stage with these lab-grown plant tissues. They have to keep working on the specifics, such as the hormone levels and the Ph of the gel. “How do we translate this success to other plant species? It would be naïve to think we can do the same thing for each species,” Velázquez-García said in a statement.

David Stern, a plant biologist and President of Boyce Thompson Institute, who was not involved with the research, told Wired that scaling up the study would take “significant financial and intellectual investment” from government and private sources. “The question is whether the technology can scale and be competitive on an economic or lifecycle basis,” he added.

The study was published in the Journal of Cleaner Production.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Eco-certificates do in fact help curb deforestation
  2. How indigenous communities in Peru used satellite data to curb deforestation
  3. Glass half full: social unrest and conflict curb global warming
  4. Trees that grow up in a neighborhood with many species produce more wood
  5. Researchers map the molecular structure of wood in bid to make it more resilient
Tags: environmentForestswood

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW