ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Can weather help against the coronavirus? New study says ‘no, but behavior can’

So you know, stay at home, watch a movie.

Alexandru MicubyAlexandru Micu
November 3, 2020 - Updated on November 5, 2020
in Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research reports that temperature and humidity do not play a significant role in the spread of the coronavirus. The study was led by members from The University of Texas at Austin.

Image credits Ina Hoekstra.

The authors aimed to better understand how temperatures influence the spread of the coronavirus. At the onset of the pandemic, it was hoped that the hot summer days would reduce its spread. The findings now, however, suggest that neither temperatures nor humidity play any significant role in the virus’ activity — its spread depends almost entirely on human behavior.

However, temperatures do have an influence on how people act, the team notes, so it can indirectly influence the spread.

All-weather bug

“The effect of weather is low and other features such as mobility have more impact than weather,” said team leader Dev Niyogi, a professor at UT Austin’s Jackson School of Geosciences and Cockrell School of Engineering. “In terms of relative importance, weather is one of the last parameters.”

The team lumped temperature and humidity together to form a single value, the “equivalent air temperature”. They then analyzed how variations in this value influenced the spread of the virus in different areas of the US and elsewhere between March and July of 2020. They also looked at the relationship between human behavior and coronavirus spread using cellphone data on a countrywide and statewide scale.

Across scales, they found that weather had nearly no influence on the spread of the virus. Compared to other factors, from a statistical point of view, weather had an influence (‘relative importance’) over the virus’ spread of less than 3%, the team reports, and they found no reason to believe that any type of weather was more conducive to infections than any other.

On the other hand, human behavior had an especially high influence. Taking a trip or spending time away from home were the two single largest contributing factors to COVID-19 spread, having a relative importance of around 34% and 26% respectively. Next were population and urban density, with a relative importance of about 23% and 13% respectively.

“We shouldn’t think of the problem as something driven by weather and climate,” Jamshidi said. “We should take personal precautions, be aware of the factors in urban exposure.”

Previous assumptions on the effect of weather on the virus were largely based on studies carried out in a laboratory setting or on related viruses, which may have skewed the results, according to the author.

RelatedPosts

NASA developed a new ventilator for COVID-19 patients in just 37 days
COVID vaccines saved at least 140,000 lives as of early May
Google donates $800 million in ad credits and cash to fight coronavirus
That 2022 Hepatitis Outbreak in Kids? It Was Apparently COVID

Baniasad, a biochemist and pharmacist, said that assumptions about how coronavirus would respond with weather are largely informed by studies conducted in laboratory settings on related viruses. She said that this study illustrates the importance of studies that analyze how the coronavirus spreads through human communities.

“When you study something in a lab, it’s a supervised environment. It’s hard to scale up to society,” said Maryam Baniasad, a doctoral candidate at Ohio State University and co-author of the paper. “This was our first motivation to do a more broad study.”

One of the main lessons we should derive from the pandemic and this study is that we need to analyze phenomena on a “human scale” — the scale at which humans live their day-to-day lives — in order to properly understand them, says Niyogi.

“COVID, it is claimed, could change everything,” Niyogi said. “We have been looking at weather and climate outlooks as a system that we scale down, down, down and then seeing how it might affect humans. Now, we are flipping the case and upscaling, starting at human exposure scale and then going outwards. This is a new paradigm we will need for studying virus exposure and human environmental modeling systems involving new sensing and AI-like techniques.”

The paper “Global to USA County Scale Analysis of Weather, Urban Density, Mobility, Homestay, and Mask Use on COVID-19” has been published in the International Journal of Environmental Research and Public Health.

Tags: coronavirusCOVID-19temperature

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Home science

The Physics of Cozy Beds Shows Why Your Toes Freeze While Your Back Sweats

byMihai Andrei
2 months ago
Diseases

That 2022 Hepatitis Outbreak in Kids? It Was Apparently COVID

byMihai Andrei
4 months ago
Genetics

Finally, mRNA vaccines against cancer are starting to become a reality

byMihai Andrei
5 months ago
Diseases

FLiRT and FLuQE, the new COVID variants making the rounds

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.