ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Breaking: Uranus smells like farts

An astronaut in the midst of Uranus' top clouds would be able to smell a rotten egg-like stench -- if he didn't die first.

Tibi PuiubyTibi Puiu
April 23, 2018
in News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

I know, I know — another Uranus joke. But in all seriousness, scientists just reported in the journal Nature Astronomy that the icy planet’s atmosphere contains significant amounts of hydrogen sulfide. Apart from the poetic significance of knowing Uranus basically smells like farts, the discovery might actually help astronomers understand how our early solar system formed and evolved.

Uranus as a featureless disc, photographed by Voyager 2 in 1986. Credit: Wikimedia Commons.
Uranus as a featureless disc, photographed by Voyager 2 in 1986. Credit: Wikimedia Commons.

For some time, scientists had presumed that the planet’s clouds contained hydrogen sulfide and ammonia. However, this was more of an inference rather than a direct observation and was hinted by the absence of certain wavelengths of light. Now, new and improved measurements obtained by using the 8-meter Gemini North telescope on Hawaii’s Mauna Kea have detected the presence of hydrogen sulfide (an unpleasant gas that most people avoid) in Uranus’s cloud tops.

The telescope’s spectrometer measured reflected sunlight from a region directly above the main visible cloud layer in Uranus’s atmosphere, according to Patrick Irwin, lead author of the new paper and researcher at the University of Oxford, UK. It’s interesting to note that Gemini’s Near-Infrared Integral Field Spectrometer (NIFS) was designed to study explosive environments around the supermassive black holes found at the center of far-away galaxies. The fact that its use has been extended to solve a longstanding mystery in our solar system is impressive, to say the least.

Uranus and Neptune both formed in the colder part of the solar nebulae that seeded the planets billions of years ago. The team directly detected hydrogen sulfide at 0.4-0.8 parts per million as ice in its cloud tops. At this concentration, an astronaut sniffing Uranus’ air would sense a rotten-egg, fart-like smell (ignoring the fact that the cold and the rest of the atmosphere’s composition would kill him). This is an observation that contrasts sharply with the inner gas giant planets Jupiter and Saturn, where no hydrogen sulfide is seen above the clouds — instead, ammonia is observed. What’s more, the spectral lines suggest that there is less ammonia in Uranus than expected, which is another clue speaking to the difference in the formation of the two sets of planets.

“During our Solar System’s formation the balance between nitrogen and sulfur (and hence ammonia and Uranus’s newly-detected hydrogen sulfide) was determined by the temperature and location of planet’s formation,” said Leigh Fletcher, a member of the research team from the University of Leicester in the UK.

According to Fletcher, this was a very challenging work because when a cloud deck forms, it locks gases away in a deep internal reservoir, hidden away beneath the levels that we can usually see with our telescopes.

“Only a tiny amount remains above the clouds as a saturated vapour,” said Fletcher. “And this is why it is so challenging to capture the signatures of ammonia and hydrogen sulfide above cloud decks of Uranus. The superior capabilities of Gemini finally gave us that lucky break,” concludes Fletcher.

Although it might smell foul, Uranus has many valuable lessons to teach scientists about the early history of the solar systems and the conditions required for icy worlds to form around stars light-years away from our sun.

Scientific reference: Patrick G. J. Irwin et al, Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere, Nature Astronomy (2018). DOI: 10.1038/s41550-018-0432-1.

RelatedPosts

Uranus is leaking gas — according to NASA
Astronomers measure frigid temperature of Uranus’ rings
Uranus orbit tipped on its side by a series of Earth-sized impacts
Scientists created diamonds from plastic bottles and then used them to study giant gas planets
Tags: uranus

Share56TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Astronomy

Uranus Is Hotter than We Thought and Probably Deserves a Visit

byMihai Andrei
3 weeks ago
News

Four of Uranus’ moons may have oceans inside them

byJordan Strickler
2 years ago
News

James Webb Space Telescope highlights Uranus’s mysterious rings

byJordan Strickler
2 years ago
Astronomy

Scientists created diamonds from plastic bottles and then used them to study giant gas planets

byRupendra Brahambhatt
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.