ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Scientists develop world’s thinnest technology – only two atoms thick

It could be ground-breaking for modern tech devices

Fermin KoopbyFermin Koop
July 1, 2021
in Discoveries, Inventions, News, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at Tel Aviv University have engineered what is currently the single smallest and thinnest piece of technology ever seen, with a thickness of just two atoms. The new invention uses quantum-mechanical electron tunneling, which allows information to travel through the thin film, and is able to store electric information, making it potentially applicable to all sorts of electronic devices.

In a screenshot from video released by Tel Aviv University on June 30, PhD student Maayan Wizner Stern uses tweezers to hold an electronic storage unit that is two-atoms thick. (Screen capture: YouTube)

Moshe Ben Shalom, who was involved in the project, said the research started from the team’s curiosity about the behavior of atoms and electrons in solid materials, which has generated the technology used by many modern devices. They tried to “predict and control” the properties of these particles, he added in a statement. 

“Our research stems from curiosity about the behavior of atoms and electrons in solid materials, which has generated many of the technologies supporting our modern way of life,” says Dr. Ben Shalom. “We (and many other scientists) try to understand, predict, and even control the fascinating properties of these particles as they condense into an ordered structure that we call a crystal. At the heart of the computer, for example, lies a tiny crystalline device designed to switch between two states indicating different responses — “yes” or “no,” “up” or “down” etc. Without this dichotomy — it is not possible to encode and process information. The practical challenge is to find a mechanism that would enable switching in a small, fast, and inexpensive device.

Modern devices have small crystals with a million atoms (one hundred atoms in height, width and thickness). This new development means that the crystals can be reduced to just two atoms thick, allowing the information to flow with greater speed and efficiency — which, if equal or comparable performance can be achieved, would make devices much more efficient.

For the study, the researchers used a two-dimensional material – one-atom-thick layers of boron and nitrogen, arranged in a repetitive hexagonal structure, drawing inspiration from graphene. They could break the symmetry of this crystal by artificially assembling two such layers “despite the strong repulsive force between them” due to their identical charges, Dr. Shalom explained. 

“In its natural three-dimensional state, this material is made up of a large number of layers placed on top of each other, with each layer rotated 180 degrees relative to its neighbors (antiparallel configuration)” said Dr. Shalom in a statement. “In the lab, we were able to artificially stack the layers in a parallel configuration with no rotation.” 

Maayan Wizner Stern, a PhD student who led the study, said the technology could have other applications beyond information storage, including detectors, energy storage and conversion and interaction with light. She hopes miniaturization and flipping through sliding will improve today’s electronic devices and allow new ways of controlling information in future devices. 

The new technology proposes a way for storing electric information in the thinnest unit known to science, in one of the most stable and inert materials in nature, the researchers said. The quantum-mechanical electron tunneling through the atomically thin film could boost the information reading process far beyond current technologies.

Researchers also expect the same approach to work with multiple crystals, potentially offering even more desirable properties. Wizner Stern concludes:

RelatedPosts

Researchers develop a new way to tackle fake news — and it’s aimed at the stock market
Measuring how effective certain insects are at pollinating
New, cheap artificial photosynthesis scrubs the air and produces fuel
Underwater caves might hint to the origins of life both on Earth and other worlds

“We expect the same behaviors in many layered crystals with the right symmetry properties. The concept of interlayer sliding as an original and efficient way to control advanced electronic devices is very promising, and we have named it Slide-Tronics.”

The study has been published in the journal Science. 

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

News

So, Where Is The Center of the Universe?

byRob Coyne
2 hours ago
Animals

Dehorning Rhinos Looks Brutal But It’s Slashing Poaching Rates by 78 Percent

byTudor Tarita
4 hours ago
Health

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

byTibi Puiu
19 hours ago
Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
21 hours ago

Recent news

So, Where Is The Center of the Universe?

June 12, 2025

Dehorning Rhinos Looks Brutal But It’s Slashing Poaching Rates by 78 Percent

June 12, 2025

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.